\qquad

Recognizing Rectangular Arrays

(1) Fill in the total number of dots for each box or group of boxes.

2) Fill in the total number of dots for each box and find the total.

\qquad

Arrays of Square Tiles

These rectangular arrays of square tiles are partly covered by a striped card. How many tiles can you see? How many tiles are covered?
1

2

Can see	
Covered	
Total	

Can see	
Covered	
Total	

5

Can see	
Covered	
Total	

6

Can see	
Covered	
Total	

Intersecting Lines

Look back at LAB pages 25 and 26.
(1) There were \qquad different maps with 1 street.
(2) There were \qquad different maps with 2 streets.
(3) There were \qquad different maps with 3 streets.
(4) There were \qquad different maps with 4 streets.
(5) There were \qquad different maps with 5 streets.
(6) Predict how many different maps
can be made with 8 streets.
(7) Using as many spaces as you need below, draw all the 8 -street maps, and label each map with its number of intersections.

Number of Intersections	Number of Intersections _	Number of Intersections _-_
	Number of Intersections	Number of Intersections
Number of Intersections	Number of Intersections	Number of Intersections
Number of Intersections		

Visualizing Intersections

Each circle touches two sets of lines.
In each blank circle, write the number of intersections you would see if the two sets of lines were both part of the same map.

Also draw any missing sets of lines.

Finding the Number of Intersections

(1) Draw a map of a town that has 7 streets and 12 intersections.
(2) Draw a map of a town that has 13 streets and 12 intersections.
(3) Draw a map of a town that has 8 streets and 12 intersections.
(5) Draw a map of a town that has 9 streets and more than 14 intersections.
(4) Draw a map of a town that has 8 streets and more than 15 intersections.
(6) Draw a map of a town that has 10 streets and fewer than 16 intersections.
\qquad
\qquad

Pairing Objects

How many handshakes would there be?

(1) A group of three hikers met a group of three bicyclists.

How many people were there? \qquad
If each hiker shook hands with each bicyclist, how many handshakes would there be?
(2) Now imagine that 2 hikers met 4 bicyclists.

How many people were there? \qquad
Draw a diagram to show all of the handshakes if each hiker shook hands with each bicyclist.

How many handshakes were there? \qquad
(3) What other number of handshakes could occur for 6 total hikers and bicyclists?

Listing Combinations

List all of the three-digit numbers that have:

- a hundreds digit from this list: 1, 2, 3
- a tens digit from this list: 4, 5
- a ones digit from this list: 6, 7, 8, 9
\qquad

choices for the hundreds digit
choices for the tens digit
\times

choices for the ones digit
\square
$=$
number of three-digit numbers

Using Multiplication

(1) The map of a tiny town shows 8 streets and 12 intersections. Draw the map.
(2) Mia arranged her baseball cards into 5 equal rows. She had 30 cards. How many columns did she make?
(3) Tony had 8 nickels. How much money did he have?
(5) Ryan takes 6 steps forward and 1 step back. If he moves this way two more times, what is the total number of steps he will take?
(6) Map A has 7 horizontal streets and 8 vertical streets. Map B has 6 horizontal streets and 9 vertical streets. Which map has more intersections? Explain.

Writing Number Sentences for Intersecting Lines

Draw a map to match the number sentences. Fill in the missing numbers.
(1)

2

(3)
(4)

\qquad
\qquad

Breaking Products into Factors

Draw a map to match the number sentences.
Fill in the missing numbers.

$\square \times \square=28$ intersections

$\square \times \square=18$ intersections
(4)

$$
\begin{aligned}
& \square+\square=11 \text { lines } \\
& \square \times \square=0 \text { intersections }
\end{aligned}
$$

$$
6
$$

$$
\square+\square=11 \text { lines }
$$

$$
\square \times \square=30 \text { intersections }
$$

Separating Arrays

Each array was cut into four parts. The number of tiles in each part were added together to find the total number in the array. Draw lines to show how the array was cut, and fill in the blanks.
(1)

2

$20+12+10+\square=\square$ (4×5)

$$
16+20+\square+15=\square
$$

$$
(4 \stackrel{\uparrow}{\times} 4)
$$

3

$(4 \stackrel{\uparrow}{\times} 8)$
$=\square$
(4)

$$
\square \begin{aligned}
& +12+12+9=\square \\
& (4 \times 3)
\end{aligned}
$$

