\qquad
\qquad

Introducing Magic Squares

Fill in the blanks to make these squares into magic squares.

(5) Jane says that, in a magic square, the sum of the top-left and bottom-right numbers are equal to the sum of the top-right and bottom-left numbers. Do you agree? Explain.
\qquad

Completing Magic Squares

In a magic star, each line of 4 numbers has the same sum. Complete the magic stars.
(1)

How Many Marbles?

Yara has 3 marbles. She puts them into 3 boxes marked A, B, and C in many different ways. Fill in the blanks in her table and find any ways she missed.

\mathbf{A}	\mathbf{B}	\mathbf{C}	Total
0	0	3	
	3		
1	0	0	
	1	2	

Reasoning About Money

Dora collects aluminum cans for recycling.
She gets $5 ¢$ for each can she turns in.
(1) If Dora gets $\$ 1.00$, how many cans did she turn in?
(2) If Dora turns in 30 cans, how much money will she get?
(3) Complete the table.

Dora turned in cans \ldots	and she got 5
10	
	$75 \not \subset$
	$\$ 1.00$
25	$\$ 1.50$

Drawing Conclusions

Jackie had some marbles and put all of them into three boxes marked A, B, and C. Decide if the statement is true (T) or false (F).

Statement 1

If Jackie put the same number of marbles in each box, then the total T F number of marbles must be even.

Statement ${ }^{2}$

If Jackie put an even number of marbles in each box, then the total T F number of marbles must be even.

Statement ${ }^{3}$

If Jackie put an odd number of marbles in each box, then the total T

F number of marbles must be odd.

Statement 4

If Jackie started with an even number of marbles, then she could not have put the same T F number of marbles in each box.

Statement ${ }^{5}$

If Jackie put a different number of marbles in each box, the total T F number of marbles must be odd.

Using the Fewest Coins

10 \& can be made in different ways.

(1) Are there any amounts of money that can be made in only one way? Explain.
\qquad
\qquad
(2) For any amount, what coins would you use to get a combination using the largest number of coins? Explain.
\qquad
\qquad
(3) Linda had 7 coins worth $53 \not \subset$ in her pocket. She used 3 coins to buy a pencil. She now has $22 \not \subset$. What were the 3 coins she used? Explain.
\qquad
\qquad
(4) How many different amounts can you have with only 2 coins? Name the coins and amounts.
(5) David has 1 quarter, 1 dime, 2 nickels, and 1 penny. How many combinations of 3 coins can he make? List the combinations.
\qquad
\qquad

Adding and Subtracting with Coins

Add and subtract coins by completing the diagram. Show each amount with the fewest coins.

Estimating Sums and Differences

Write a number in the box that makes the sum a little more than 60.
1

2 $\square+38=$
(3) \square $+46=$ \qquad
4 \square $+9=$
\qquad
(5) Write the exact sum for Problems 1 to 4 on the line.

Write a number in the box that makes the difference a little less than 30.

(7) $115-\square=$ \qquad
$892-\square=$ \qquad
© \qquad
(10) Write the exact difference for Problems 6 to 9 on the line.
(11) How could knowing $350+540$ help you solve $357+546 ?$

