$\qquad$

Each student in Ms. Tanaka's class was asked, "What is your favorite fruit?" Use the pictograph to answer questions about this survey.
(1) What fruit did most students pick for their favorite?
(2) How many more students picked apple than picked orange for their favorite fruit?

FAVORITE FRUIT

$\qquad$
(3) Which fruit was chosen as favorite by the fewest students?
(4) How many students are in Ms. Tanaka's class?
(5) What can you say for sure about the fruit preferences of Ms. Tanaka's class?
$\qquad$
(6) How many pieces of fruit does Ms. Tanaka's class eat each day?
A. 28
B. 15
C. 0
D. Do not know
(7) Use the information below to complete the pictograph of favorite drinks.

15 people completed the survey.

Water was the least popular drink.

8 people liked milk best.
3 more people liked milk best than liked juice best.

2 people liked iced tea best.

| FAVORITE DRINK |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| M |  |  |  |
| Milk | Water | Juice | Iced Tea |

(8) Challenge From the pictograph, what can you say?

| WHAT INSTRUMENT DO YOU PLAY? |  |
| :--- | :--- |
| Piano | S |
| Guitar | S |
| Violin | S |
| Trumpet | S |

$\qquad$
$\qquad$

The pictograph shows data from a survey taken at the library.

| FAVORITE TYPE OF BOOK |  |
| :--- | :--- |
| Nonfiction | Science fiction |
| Historical fiction | 0 |

Key: Each 10 people.
(1) Of the people who answered the survey, how many chose fantasy as their favorite type of book?
(2) How many chose historical fiction as their favorite?
(3) How many more people chose fantasy as their favorite than chose science fiction?
$\qquad$
(4) How might the librarian use the results of the survey when choosing new books to order?
(5) Can you say anything about the number of books checked out of the library this year? Explain.
（6）Use the information below to complete the pictograph．

200 people completed the survey．
SUVs are driven by the most people．
Station wagons are the least popular．
30 more people drive SUVs than drive pick－up trucks．

50 people drive pick－up trucks．
40 fewer people drive station wagons than drive pick－up trucks．

| WHAT DO YOU DRIVE？ |  |
| :--- | :--- |
| Compact car |  |
| SUV |  |
| Pick－up truck |  |
| Station wagon |  |

Key：Each C＝ 10 cars．
（7）Challenge What are three questions you can answer from the pictograph？
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

40 third graders answered a survey about their favorite way to exercise. The bar graph shows the data.
(1) How many students chose walking?
(2) How many students chose jumping rope?
(3) How many more students chose soccer than chose biking?

(4) What can you say for sure about the exercise preferences of the students in the survey?
$\qquad$
$\qquad$
(5) Can you say anything for sure about the number of students who exercise at least 30 minutes a day? Explain.

6600 students were asked to choose one way they would like to help protect the environment. Use the information below to complete the bar graph.
280 students want to recycle.
Half as many students chose to save water as chose to recycle.

One tenth of the students want to raise money to protect the rain forest.

55 students want to plant trees.

(7) Challenge What are three questions you can answer from the bar graph?
$\qquad$
$\qquad$

Chapter 8

## Lesson 4

## Exploring Probability

NCTM Standards 5, 6, 7, 8, 9, 10

Imagine you toss two number cubes, one blue and one green, and find the sum of the results.
(1) What sum is most likely? Prediction: $\qquad$
(2) What results are possible for . . .
the blue cube? $\qquad$ the green cube?
(3) What sums are possible? $\qquad$
(4) Complete the table at right to show the sum for each pair of results.
(5) How many ways are there to get a total of . . .
$3 ?$ $\qquad$
$5 ?$
$7 ?$ $\qquad$

The Number on the Blue Cube

(6) Which sum is most likely? Explain.

Maryann tossed two number cubes 20 times and wrote the sum each time. Here are her results:

5, 7, 7, 9, 6, 8, 8, 5, 7, 6, 8, 12, 7, 5, 9, 4, 11, 10, 10, 12
(7) Complete the bar graph of Maryann's sums.


8 Which sum(s) occurred most often?
(2) Which sum(s) occurred least often? $\qquad$
(10) Using the table on the previous page, which sum would you expect to occur more often: 11 or 12?

Which of those two sums occurred more often for Maryann?
(11) Challenge Imagine a bag containing 3 green marbles, 2 blue marbles, and 1 red marble. If you
$\qquad$ reach in without looking and take 2 marbles, what colors could they be? List all the possibilities.
$\qquad$

## Experimenting with Probability

NCTM Standards 5, 6, 7, 8, 9, 10
Imagine that you toss two coins: a penny and a nickel. Each coin shows either heads or tails. You record the number of heads.
(1) What number of heads
 do you think is most likely? Prediction: $\qquad$
(2) Complete the table to show the number of heads for each pair of possible results.

(3) How many ways are there to get...
$\qquad$ 1 head? $\qquad$ 2 heads? $\qquad$
(4) Toss a nickel and a penny 20 times and record the number of heads each time by making a tally mark in the correct row of this table.

| 0 heads |  |
| :--- | :--- |
| 1 head |  |
| 2 heads |  |

(5) Which number of heads occurred most often for you?

Imagine that you toss three coins: a penny, a nickel, and a dime. You record the number of heads each time.
(6) Complete the table to show each possible result and the total number of heads.

| Penny | Nickel | Dime | Number of Heads |
| :---: | :---: | :---: | :---: |
| H | H | H | 3 |
| H | H | T | 2 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

(7) Is 0 heads more likely than 1 head? Explain.
$\qquad$
$\qquad$
(8) Is 1 head more likely than 2 heads? Explain.
(9) Challenge Is it more likely the penny will show heads than the nickel will show heads? Explain.
$\qquad$
$\qquad$

## Erasers and pencils are on SALE!



Limit: no more than 3 of each item to a customer.
(1) What is the total cost of 1 pencil and 1 eraser during the sale?
(2) Jimmy spent $13 \not \subset$. What did he buy?
(3) Could you spend exactly 19 $\phi$ ?
(4) What purchase costs $15 \not \subset$ ?
(5) What could you buy with exactly 1 dime?
(6) What would you buy if you wanted the most items possible?
(7) How much would you spend if you buy as many items as possible?
(8) Alice gave the cashier 1 dime and 1 nickel. She received $1 \not \subset$ in change. How much did she spend?

What could she buy for that amount?
(2) How much would it cost to buy 2 pencils and 3 erasers?

What coins could you use to pay that exact amount?

Mary gave the cashier 1 quarter and got 1 dime and 4 pennies in change. How much did she spend?

What could she buy for that amount?
(11) Ali gave the cashier 2 coins and did not get change back. Tell whether each purchase is possible, and if so, what 2 coins Ali used.

Could Ali have bought 2 erasers?
Could Ali have bought 1 pencil and 2 erasers?

Could Ali have bought 2 pencils?
(12) Challenge Erin has enough money to buy 3 pencils and 2 erasers, but not enough money to buy another eraser. How much money could she have?
$\qquad$

Chapter 8

## Lesson 7

Finding Locations on a Map
NCTM Standards 3, 5, 6, 7, 8, 9, 10

Write each person's name in the correct box on the map.

(1) Jack's house is in A3.
(2) Stacy lives between Jack and the school.
(3) Amanda lives in E4.
(4) Luke's house is in E2.
(5) On the map, Adrine's house is directly above Luke's house.
(6) Kevin lives between Adrine and the school.

Write the location of each person's house.
(7) Jack A3
(8) Stacy $\qquad$
(9) Amanda $\qquad$
(10) Luke $\qquad$
(11) Adrine
$\qquad$
(12) Kevin $\qquad$

The graph shows the fruits Ms．Lopez＇s students ate on Monday．

（13）How many apples did the class eat？
（14）How many more berries than pears did the class eat？
（13）Which fruit was eaten most？
（10）Which fruit was eaten least？
（17）How many pieces of fruit did the class eat in all？
（18）Challenge Write two more questions that can be answered by looking at the graph．
$\qquad$

The map shows the stops on a postal worker's route.


## Describe the location of each stop.

# (1) Stop 1 is at the intersection of Avenue <br> $\qquad$ and <br> $\qquad$ Street. 

(2) Stop 2 is at the intersection of Avenue $\qquad$ and $\qquad$ Street.
(3) Stop 3 is at the intersection of Avenue $\qquad$ and $\qquad$ Street.
(4) Stop 4 is at the intersection of Avenue $\qquad$ and $\qquad$ Street.
(5) Stop 5 is at the intersection of Avenue $\qquad$ and $\qquad$ Street.

6 Stop 6 is at the intersection of Avenue $\qquad$ and $\qquad$ Street.

3 Stop 7 is at the intersection of Avenue $\qquad$ and $\qquad$ Street.

8 Draw a point for each stop on Sarah's paper delivery route. Label each point with the stop number.

Stop 1 is at the intersection of Avenue H and Fifth Street.
Stop 2 is at the intersection of Avenue F and Sixth Street.
Stop 3 is at the intersection of Avenue E and Fourth Street.
Stop 4 is at the intersection of Avenue A and Second Street.


Avenue Avenue Avenue Avenue Avenue Avenue Avenue Avenue $\begin{array}{lllllll}\text { A } & \text { B C } & \text { D } & \text { E } & \text { F }\end{array}$
(2) Challenge Tim earns \$1 every 2 weeks for taking out the trash. How much money can he earn in 8 weeks? Fill in the graph to find out.

He can earn $\qquad$ in 8 weeks.

$\qquad$

Chapter 8

## Lesson 9

## Graphing Solutions to Open Number Sentences <br> NCTM Standards 1, 2, 5, 6, 7, 8, 10

(1) Complete the table and graph the points.

$$
\triangle \square \square 3
$$

| $\triangle$ | 7 | 10 |  |  | 4 |  |  | 5 |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square$ | 4 | 7 | 3 | 0 |  | 9 | 8 |  | 5 |  |


(2) If $\Delta$ and $\square$ must both be whole numbers, could $\triangle$ be 2? Explain your answer.
(3) If $\triangle$ and $\square$ must both be whole numbers, could $\square$ be 100? Explain your answer.
$\qquad$
(4) Complete the table and graph the points.
$\square \square \square 5 \diamond \bigcirc$

| $\square$ | 0 | 1 | 2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\bigcirc$ | 5 |  |  |  |  |  |  |  |


(5) If $\square$ and $\bigcirc$ must both be whole numbers, could $\square$ be 100? Explain your answer.
© If $\square$ and $\bigcirc$ must both be whole numbers, could $\bigcirc$ be 2? Explain your answer.
(7) Challenge What do you notice about the points on the graph?
$\qquad$
$\qquad$

## Pens and notepads are on sale!

Limit: no more than 3 of each item to a customer.


## Solve each problem.

(1) Han made a purchase at the school store. The amount she spent is a multiple of 7 . What did Han buy?
(2) The amount that Max spent was a two-digit number. When the two digits are added together they equal 4. What did Max buy?
(3) Shana and Stu spent the same amount of money at the school store, but they bought different items. If Shana didn't buy any notepads, what did Stu buy?

## Problem Solving Test Prep

## Choose the correct answer.

(1) Martina had 2 pizzas at her party. She cut each into the same number of slices. After 4 slices were eaten, $\frac{3}{4}$ of the slices were left. Into how many slices was each pizza cut?
A. 4
B. 8
C. 12
D. 16
(2) James lives 6 blocks from school. He rides his bike to and from school on Monday, Wednesday, and Friday. How many blocks does he ride in one week?
A. 12
B. 18
C. 36
D. 48

## Show What You Know

Solve each problem. Explain your answer.
(3) A snack machine takes only nickels, dimes, and quarters. You want to buy a snack for 354 . How many ways can you pay for it? Explain how you know that you have found all possible ways.
$\qquad$
$\square$
$\qquad$
$\qquad$
(4) The table shows the prices of different numbers of postcards.

| 1 | 2 | 3 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| $14 \not \subset$ | $28 \phi$ | $42 \not \subset$ | $84 \phi$ | $98 \not \subset$ |

Brad needs 5 postcards. How much will they cost? Explain two different ways to find the answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Chapter 8 Review/Assessment <br> NCTM Standards 5, 6, 7, 8, 9, 10

Students were asked to choose their favorite subject. Lessons 1 and 2

| FAVORITE SUBJECT |  |
| :---: | :---: |
| Social Studies | $\triangle \triangle \triangle \triangle \triangle \triangle$ |
| Math |  |
| Science | $\triangle \triangle \triangle \triangle \triangle \triangle$ |
| Language Arts | $\triangle \triangle \triangle \triangle \triangle$ |

Key: Each $\triangle=10$ students.
(1) How many students chose Social Studies as their favorite subject?
(2) How many more students chose Math than chose Science? $\qquad$
(3) How many students answered the survey?

A pair of gloves costs \$2.00, and a hat costs $\$ 5.00$. There is a limit of 3 of each item to a customer. Complete the table and solve the problems. Lessons 6 and 10
(4) What items would you buy if you spent the greatest amount possible?
$\qquad$
(5) What can you purchase for \$17?

|  |  | Hats |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 |
| $\checkmark$ | 0 |  |  |  |  |
| 은 | 1 |  |  |  |  |
| $\stackrel{0}{\sim}$ | 2 |  |  |  |  |
| $\bigcirc$ | 3 |  |  |  |  |

Describe the location of each person. Lesson 8

© Julia is at the intersection of Avenue A and Third Street.
(7) Mark is at the intersection of Avenue $\qquad$ and $\qquad$ Street.
(8) Maddy is at the intersection of Avenue $\qquad$ and $\qquad$ Street.

## Lola tosses a number cube numbered 1 through 6. <br> Lessons 4 and 5

(2) Is it possible or impossible for Lola to toss an odd number?
(10) Is Lola more likely to toss a number less than 2 or a number greater than 3 ?

Lola made a bar graph of her results. Lesson 3

Which toss occurred most often?
(12) How many times did Lola toss a number greater than 3 ?


