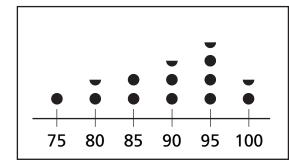

Introducing Angles

The pie charts show two classes' favorite colors:

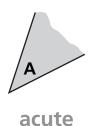
MS. PANUCCI'S CLASS

MR. BOWEN'S CLASS


Write if the statements are true or false.

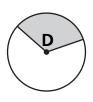
- 1 In Ms. Panucci's class, less than half of the students like green.
- The same color is the least popular in both classes.
- The same color is the most popular in both classes.
- 4 In Mr. Bowen's class, more students like green than all the rest of the colors put together.
- 5 Blue is more popular in Ms. Panucci's class than in Mr. Bowen's.

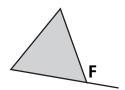
Test Prep


- 6 This graph shows how students scored on a test. How many students scored 90 or higher?
 - A. 5 students C. 15 students
 - **B.** 7 students D. 24 students

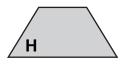
Key: Each \bullet = 2 students.

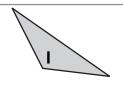
Classifying Angles


Label each angle acute, right, or obtuse.


4

6


6

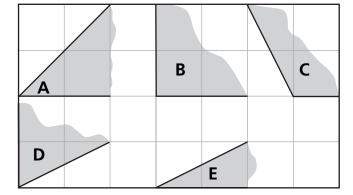

obtuse

8

9

Test Prep

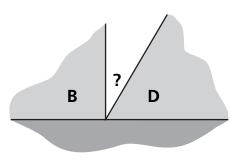
- 100 Jamie, Frank, and Andrea each measured the length of the same classroom using their own feet as the unit of measurement.
 - Jamie reported a length that measured 67 of her feet.
 - Frank reported a length that measured 81 of his feet.
 - Andrea reported a length that measured 92 of her feet.


Explain how you know which student had the smallest feet.

Center
Development
Folioation
П

Classifying Triangles by Angles

5 Name the angles from the smallest to the largest:


<u>∠E</u> , <u>∠</u> , <u>∠</u> , <u>∠</u>

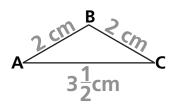
 $2 \stackrel{\angle}{-}$, $\stackrel{\angle}{-}$, and $\stackrel{\angle}{-}$ are acute angles.

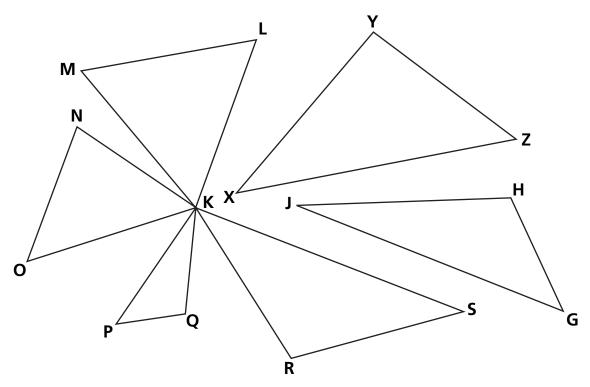
 \angle is a right angle.

 \angle is an obtuse angle.

Test Prep

4 Jacob spent exactly \$8.65 on lunch for himself and two friends. What did he buy? Explain your answer.


I	Cheese Sandwich	\$1.50
	Hamburger	\$1.75
	Hot Doa	\$1.30


© Education Development Center, Inc.

Classifying Triangles by Side Length

Measure and write the sides of the triangles in centimeters. Then, classify the triangles.

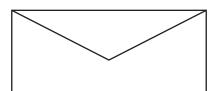
Example:

Equilateral triangle(s): ______ Isosceles triangle(s): _____

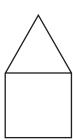
Scalene triangle(s): _____

Test Prep

- 1 Two friends plan to equally share the cost of a game. The game costs \$29.99 including tax. Which is the best estimate of the amount each of them will have to pay?
 - **A.** \$10
- **C.** \$15
- **B.** \$14
- **D.** \$20

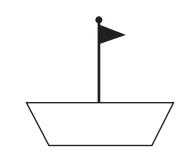

- Russell spent 90¢ on 6 note pads. He spent 60¢ on 10 pencils. How much more does one note pad cost than one pencil?

 - **A.** 6¢ **C.** 15¢


 - **B.** 9¢ **D.** 20¢

Introducing Perpendicular and Parallel Lines

How many pairs of parallel lines are in these pictures?



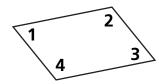
_ pair(s) of parallel lines

_ pair(s) of parallel lines

B

pair(s) of parallel lines

4



____ pair(s) of parallel lines

Test Prep

5 Which angles are obtuse?

- A. Angles 1 and 2
- B. Angles 1 and 3
- C. Angles 1 and 4
- D. Angles 2 and 4

- 6 Enrique has 18 markers. He gives 5 of them to Kevin so that they each have the same number. How many markers do they have in all?
 - **A.** 36
 - **B**. 26
 - **C**. 18
 - **D**. 13

Classifying Quadrilaterals by the Number of Parallel Sides

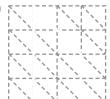
Fill in the blanks for these figures.

- 0
- 2 pair(s) of parallel sides
- 2 pair(s) of equal sides
- $\frac{4}{}$ right angles

- _____ pair(s) of parallel sides
- 2 pair(s) of equal sides
- ____ right angles

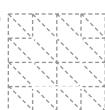
pair(s) of parallel sides

pair(s) of equal sides


_ right angles

_ pair(s) of parallel sides

pair(s) of equal sides


___ right angles

Draw the quadrilaterals described below. You may trace the dotted lines to help.

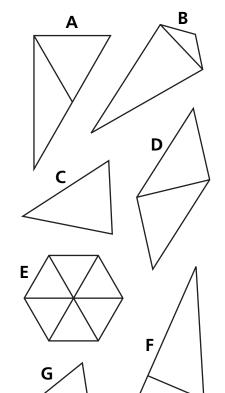
1 pair of parallel sides

Exactly 2 right angles

- 2 pairs of parallel sides
- 4 right angles
- 4 equal sides

Test Prep

Rlarke is throwing darts onto different targets. He never misses the target completely. Which target gives him the best chance of hitting a shaded area?



Classifying Parallelograms

Match each figure to its description. You may use a ruler to help.

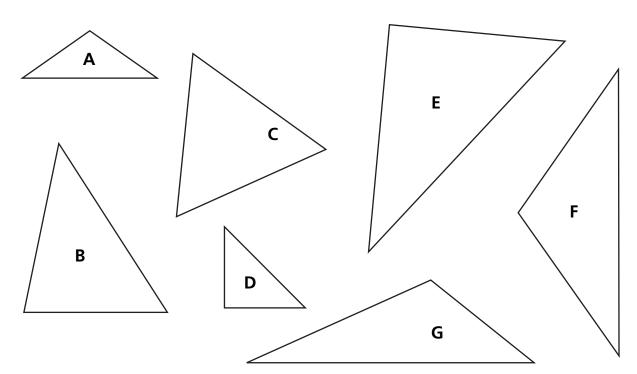
- An acute, scalene triangle
- A right triangle made of two isosceles triangles—an acute one and an obtuse one
- An equilateral triangle
- A quadrilateral made of two isosceles triangles—an acute one and an obtuse one
- 5 A quadrilateral made of two congruent triangles
- A figure made of equilateral triangles
- A triangle made of two right triangles

Test Prep

Solution States Sta

© Education Development Center, Inc.

Practice Lesson 8


Symmetry in Triangles and Quadrilaterals

Classify the triangles by their lines of symmetry.

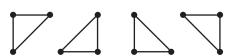
0 lines of symmetry: _____

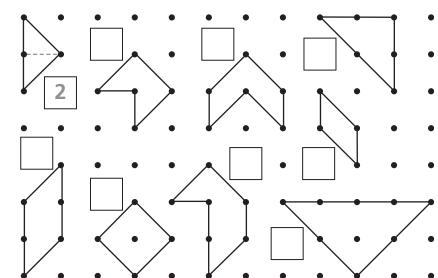
1 line of symmetry:

3 lines of symmetry: _____

Test Prep

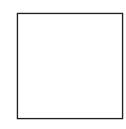
1 Johanna started to play a video game at 4:45 P.M. When she finished playing, her watch showed this time:


How long did she play? Explain.


Education Development Center, Inc.

Working with Transformations

How many pieces this size and shape will make the figures on the dot grid?


Draw lines to show the pieces.

This pattern was made by repeating a figure.

Draw the repeating figure.

The figure was: (circle all that could apply)

Translated

Rotated

Reflected

Test Prep

3 In a room, chairs were arranged in 3 rows. There were 18 chairs in each row. After a meeting, 3 chairs were removed from one of the rows.

Which number sentence can be used to find the total number of chairs remaining after the meeting?

A.
$$3 \times 18 - 3 = \blacksquare$$

B.
$$3 \times 18 + 3 = \blacksquare$$

D.
$$2 \times 18 - 3 = \blacksquare$$