\qquad
\qquad

Exploring Fractions

(1)

$\frac{1}{5}$ of the area is___ square units
$\frac{2}{5}$ of the area is ___ square units $\frac{3}{5}$ of the area is ___ square units $\frac{4}{5}$ of the area is \qquad square units
(3)

Area:
 sq units
$\frac{1}{8}$ of the area is \qquad square units
$\frac{3}{8}$ of the area is \qquad square units $\frac{6}{8}$ of the area is \qquad square units
(5) Separate the group of stars into thirds.
___ stars are in $\frac{1}{3}$ of the group.
___ stars are in $\frac{2}{3}$ of the group.
___ stars are in $\frac{3}{3}$ of the group.
___ stars are in $\frac{4}{3}$ of the group.

2
 Perimeter: \square units Area: \square sq units
$\frac{1}{5}$ of the area is \qquad square units $\frac{2}{5}$ of the area is \qquad square units $\frac{3}{5}$ of the area is \qquad square units $\frac{6}{5}$ of the area is \qquad square units
(4)
 Perimeter: \square units Area: \square sq units
$\frac{1}{6}$ of the area is \qquad square units $\frac{3}{6}$ of the area is \qquad square units $\frac{5}{6}$ of the area is \qquad square units
(6) Divide the segment into fourths.

If the line segment were 4 inches long, how long would $\frac{1}{4}$ of it be?

16 inches long, how long would $\frac{1}{4}$ of it be?
\qquad

Exploring Fractions Greater than 1

Try these problems. You can use pattern blocks if they help.

(1) If $R \quad$ is 5 , then what is Y ?
(2) If Y is 32 , then what is R ? \qquad
(3) If Y is 5 , then what is R ? \qquad
(4) If \mathbf{Y} is 6 , then what is R ? -
(5) If \mathbf{G} is $4 \frac{1}{2}$, then what is \mathbf{B}
(6) If \mathbf{G} is 5 , then what is $R \quad$?
(7) If \mathbf{R} is 1 , then what is $\mathbf{G}^{\mathbf{G} \text { ? }}$ \qquad
(8) If \mathbf{Y} is 2 , then what is \mathbf{G} ? \qquad
(2) If Y is 3 , then what is $\frac{G G}{G}$? $-$
(10) If \mathbf{B} is $1 \frac{1}{2}$, then what is

Y ? \qquad
\qquad

Exploring Fractions with Cuisenaire ${ }^{\text {® }}$ Rods

To complete the number sentences, refer to these Cuisenaire ${ }^{\circledR}$ Rods.

The yellow rod equals 1.

\qquad

Reasoning about Cuisenaire ${ }^{\circledR}$ Rod Fractions

Nick's recipe for trail mix calls for:
1 c granola
$\frac{1}{2} \mathrm{c}$ dried apricots
$\frac{2}{3}$ c sunflower seeds
$\frac{3}{4}$ c raisins
$\frac{1}{4}$ c chocolate chips
Nick decided to make one batch of trail mix. He looked to see if he had what he needed. This is what he found in his kitchen:
$\frac{9}{8}$ c granola
$\frac{4}{8} \mathrm{C}$ dried apricots
$\frac{1}{3}$ c sunflower seeds
$\frac{3}{8}$ c raisins
$\frac{1}{3}$ c chocolate chips
(1) Which ingredients does he NOT have enough of?
(2) With the ingredients that Nick already has, how much trail mix can he make?
(3) How much of each ingredient will Nick use?
(4) How much granola will Nick have left?
(5) Which other ingredients will Nick NOT use up completely?
\qquad
\qquad

Fractions of a Foot

Use an inch ruler to solve.

12 inches = 1 foot
1 yard = 3 feet
(1) $\frac{1}{2}$ foot $=$ \qquad inches
(3) $\frac{1}{3}$ foot $=$ \qquad inches

5 \qquad foot $=5$ inches
(7) 1 yard $=$ \qquad inches
(2) $\frac{1}{3}$ yard $=$ \qquad inches
(11) ___ yard $=5$ inches (13) $\frac{1}{3}$ yard $+\frac{1}{6}$ yard $=$ \qquad inches
(14) $\frac{1}{3}$ yard $+\frac{1}{2}$ yard $+\frac{1}{6}$ yard $=$ \qquad inches
(8) $\frac{1}{2}$ yard $=\ldots$ inches
(10) \qquad
(12) \quad yard $=24$ inches

- yard $=1$ inch
\qquad
6 \qquad foot $=2$ inches
4
foot $=1$ inch
(2) $\frac{1}{4}$ foot $=$ \qquad inches
\qquad
\qquad

Comparing Fractions with One Half

Complete each fraction so that it equals $\frac{3}{4}$.

Use $<,>$, or $=$ to compare the fractions.

(1) $\frac{1}{2}$	(2) $\frac{2}{2}$	(3) $\frac{3}{2}$
(4) $\frac{7}{8}$	(5) $\frac{1}{8}$	(6) $\frac{6}{8}$
(7) $\frac{7}{15}$	8	- $\frac{8}{15}$

Comparing Fractions

Draw two Cuisenaire ${ }^{\circledR}$ Rods to represent the fractions. In all of the problems, the orange rod is equal to 1. You can use Cuisenaire ${ }^{\circledR}$ Rods if you need help.

(2) $\frac{2}{4}$
(3) $\frac{9}{10}$
(4) $\frac{4}{5}$
(5) $\frac{12}{20}$
(6) $\frac{20}{50}$

Finding Equivalent Fractions

Use an inch ruler to solve.

(1) $\frac{1}{6}$ of a foot is__ inches. $\frac{2}{12}$ of a foot is also $\quad 2$ inches.

2 $\frac{2}{6}$ of a foot is inches. \qquad of a foot is also \qquad inches.
(3) $\frac{3}{6}$ of a foot is \qquad inches. \qquad of a foot is also \qquad inches.
(4) $\frac{6}{6}$ of a foot is__ inches. \qquad of a foot is also \qquad inches.
(5) $\frac{7}{6}$ of a foot is inches. \qquad of a foot is also \qquad inches.
\qquad

Making Equivalent Fractions

Complete the sentences.

\qquad

Fractions in Measurement

Record the lengths of these lines.

Lengths:
A: \qquad inches
C: \qquad inches
E: \qquad inches
B: \qquad inches
D: \qquad inches
F: \qquad inches

Sums of lengths:
A and B : \qquad inches
D and E : \qquad inches
B and C : \qquad inches
E and F : \qquad inches

Differences between lengths:
B and D: \qquad inches
E and F : \qquad inches

B and A: \qquad inches

C and D: \qquad inches
\qquad

Modeling Addition of Fractions

Make $\frac{2}{3}$ in as many ways as you can. Record your number sentences below. Use the back of the page if you have ideas for more number sentences.

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

