### **Exploring Fractions**



Perimeter:

| units |
|-------|
|-------|

 g units

|  |  | Area: | S |
|--|--|-------|---|
|  |  |       |   |

 $\frac{1}{5}$  of the area is \_\_\_\_\_ square units

 $\frac{2}{5}$  of the area is \_\_\_\_\_ square units

 $\frac{3}{5}$  of the area is \_\_\_\_\_ square units

 $\frac{4}{5}$  of the area is \_\_\_\_\_ square units



 $\frac{1}{5}$  of the area is \_\_\_\_\_ square units

 $\frac{2}{5}$  of the area is \_\_\_\_\_ square units

 $\frac{3}{5}$  of the area is \_\_\_\_\_ square units

 $\frac{6}{5}$  of the area is \_\_\_\_\_ square units



Perimeter:

|  | units |
|--|-------|
|--|-------|

Area: sq units

Perimeter: units

Area: sq units

 $\frac{1}{8}$  of the area is \_\_\_\_\_ square units

 $\frac{3}{8}$  of the area is \_\_\_\_\_ square units

 $\frac{6}{8}$  of the area is \_\_\_\_\_ square units

 $\frac{1}{6}$  of the area is \_\_\_\_\_ square units  $\frac{3}{6}$  of the area is \_\_\_\_\_ square units  $\frac{5}{6}$  of the area is \_\_\_\_\_ square units

**5** Separate the group of stars into thirds.

 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D

\_\_\_\_ stars are in  $\frac{1}{3}$  of the group.

\_\_\_\_ stars are in  $\frac{2}{3}$  of the group.

\_\_\_\_ stars are in  $\frac{3}{3}$  of the group.

\_\_\_\_ stars are in  $\frac{4}{3}$  of the group.

**6** Divide the segment into fourths.

If the line segment were 4 inches long, how long would  $\frac{1}{4}$  of it be?

If the line segment were 16 inches long, how long would  $\frac{1}{4}$  of it be?

## **Exploring Fractions Greater than 1**

Try these problems. You can use pattern blocks if they help.

**5** If **G** is 
$$4\frac{1}{2}$$
, then what is **B** ? \_\_\_\_\_

10 If B is 
$$1\frac{1}{2}$$
, then what is Y?

#### **Exploring Fractions with Cuisenaire® Rods**

To complete the number sentences, refer to these Cuisenaire® Rods.

The yellow rod equals 1.



0



$$\frac{2}{5} + \frac{3}{5} =$$

2

$$\frac{2}{5} + \frac{2}{5} + \frac{1}{5} =$$

**B** 



$$\frac{3}{5} + \frac{1}{5} =$$

4



$$\frac{4}{5}$$
 +  $\boxed{\phantom{0}}$  =  $\frac{5}{5}$ 

5



$$\frac{4}{5} + \frac{2}{5} =$$

6

$$\frac{3}{5} + \frac{4}{5} =$$

| Name | Date |
|------|------|
| Name | Daic |

#### Reasoning about Cuisenaire® Rod **Fractions**

Nick's recipe for trail mix calls for:

- 1 c granola
- $\frac{1}{2}$  c dried apricots
- c sunflower seeds
- c raisins
- $\frac{1}{4}$  c chocolate chips

Nick decided to make one batch of trail mix. He looked to see if he had what he needed. This is what he found in his kitchen:

- $\frac{9}{8}$  c granola
- c dried apricots
- c sunflower seeds
- c raisins
- $\frac{1}{3}$  c chocolate chips
- Which ingredients does he NOT have enough of?
- With the ingredients that Nick already has, how much trail mix can he make?
- How much of each ingredient will Nick use?

- 4 How much granola will Nick have left?
- 5 Which other ingredients will Nick NOT use up completely?

#### Fractions of a Foot

Use an inch ruler to solve.



12 inches = 1 foot

1 yard = 3 feet

 $2 \frac{1}{4} \text{ foot} = \underline{\qquad} \text{ inches}$ 

 $3 \frac{1}{3}$  foot = \_\_\_\_ inches

4 \_\_\_\_\_ foot = 1 inch

**5** \_\_\_\_\_ foot = 5 inches

**6** \_\_\_\_\_ foot = 2 inches

1 yard = \_\_\_\_\_ inches

8  $\frac{1}{2}$  yard = \_\_\_\_\_ inches

10 \_\_\_\_\_ yard = 1 inch

**1** \_\_\_\_\_\_ yard = 5 inches

**1** \_\_\_\_\_ yard = 24 inches

 $\frac{1}{3} \text{ yard } + \frac{1}{2} \text{ yard } + \frac{1}{6} \text{ yard } = \underline{\qquad} \text{ inches}$ 

# **Comparing Fractions with One Half**

Complete each fraction so that it equals  $\frac{3}{4}$ .



Use <, >, or = to compare the fractions.

$$1 \frac{1}{2}$$

$$\frac{2}{2}$$
  $\frac{3}{4}$ 

$$\frac{3}{2}$$
  $\frac{3}{4}$ 

$$\frac{3}{8}$$

**5** 
$$\frac{1}{8}$$
  $\frac{3}{4}$ 

**6** 
$$\frac{6}{8}$$
  $\frac{3}{4}$ 

$$7 \frac{7}{15}$$

$$\frac{14}{15}$$
  $\frac{3}{4}$ 

# **Comparing Fractions**

**Draw two Cuisenaire® Rods to represent** the fractions. In all of the problems, the orange rod is equal to 1. You can use Cuisenaire® Rods if you need help.



 $0\frac{1}{5}$ 

ww

 $2\frac{2}{4}$ 

 $\frac{9}{10}$ 

 $\frac{4}{5}$ 

**5**  $\frac{12}{20}$ 

 $\frac{20}{50}$ 

### **Finding Equivalent Fractions**

Use an inch ruler to solve.



- 1  $\frac{1}{6}$  of a foot is \_\_\_\_\_ inches.  $\frac{2}{12}$  of a foot is also \_\_\_\_ inches.
- $2\frac{2}{6}$  of a foot is \_\_\_\_\_ inches. \_\_\_\_ of a foot is also \_\_\_\_ inches.
- $\frac{3}{6}$  of a foot is \_\_\_\_\_ inches. \_\_\_\_ of a foot is also \_\_\_\_ inches.

- $\bigcirc \frac{6}{6}$  of a foot is \_\_\_\_\_ inches. \_\_\_\_ of a foot is also \_\_\_\_ inches.

## **Making Equivalent Fractions**

Complete the sentences.

$$1 \frac{9}{18} = \frac{1}{\phantom{0}}$$

$$\frac{9}{27} = \frac{1}{\phantom{0}}$$

$$\frac{3}{8} = \frac{3}{3}$$

$$\frac{4}{75} = \frac{5}{\boxed{}}$$

$$\frac{3}{21} = \frac{1}{1}$$

$$\frac{18}{30} = \frac{3}{30}$$



Half of 
$$\frac{1}{2}$$
 is \_\_\_\_\_.



Half of 
$$\frac{2}{7}$$
 is \_\_\_\_\_.





Half of  $\frac{1}{3}$  is \_\_\_\_\_.



Half of 
$$\frac{3}{4}$$
 is \_\_\_\_\_.



Half of 
$$\frac{1}{5}$$
 is \_\_\_\_\_.

#### **Fractions in Measurement**

Record the lengths of these lines.



Lengths:

- **A:** \_\_\_\_\_ inches **C:** \_\_\_\_\_ inches **E:** \_\_\_\_\_ inches

- **B**: \_\_\_\_\_ inches
- **D**: \_\_\_\_\_ inches
- F: \_\_\_\_\_ inches

Sums of lengths:

A and B: \_\_\_\_\_ inches

**D** and **E**: \_\_\_\_\_ inches

**B** and **C**: \_\_\_\_\_\_ inches

E and F: \_\_\_\_\_ inches

**Differences between lengths:** 

**B** and **D**: \_\_\_\_\_ inches

E and F: \_\_\_\_\_ inches

**B** and **A**: \_\_\_\_\_ inches

C and D: \_\_\_\_\_ inches

## **Modeling Addition of Fractions**

Make  $\frac{2}{3}$  in as many ways as you can. Record your number sentences below. Use the back of the page if you have ideas for more number sentences.

| <u>1</u> | <u>1</u> | <u>1</u> |
|----------|----------|----------|
| 3        | 3        | 3        |

$$\begin{array}{c|c} \bullet & & & \\ \hline & + & \hline & = & \hline \\ \hline & 3 & \\ \end{array}$$

$$\begin{array}{c|c} 2 & & & \\ \hline & - & & \\ \hline & & \end{array} = \begin{array}{c} 2 \\ \hline 3 \end{array}$$

$$\begin{array}{c|c} \bullet & & & \\ \hline & + & \hline & = & \hline \\ \hline & & \hline \end{array}$$



$$\begin{array}{c|c} \mathbf{8} & & & \\ \hline & + & \hline & + & \hline \\ \hline & & \end{array} + \begin{array}{c} \mathbf{2} \\ \hline & 3 \end{array}$$