Length and Perimeter

Measure the sides of each figure to the nearest centimeter. Record the perimeter in $\mathbf{c m}$.

$\overline{A B}$ \qquad $\overline{C D} \quad \overline{D A}$ Perimeter
(3)

$\overline{H I}$ \qquad $\overline{I J}$ \qquad

2

$\overline{E F}$ \qquad $\overline{F G}$
$\overline{G E}$
\qquad

$$
\overline{G E}
$$

\qquad
(4)

$\overline{L M}$ \qquad
$\overline{J K}$ \qquad

$$
\overline{K H}
$$

\qquad

Perimeter \qquad
$\overline{P L}$ \qquad

Perimeter \qquad

Name \qquad Date \qquad

Perimeter Formulas

Find the perimeter of each parallelogram.
1

2

Perimeter \qquad units

Perimeter \qquad units

Perimeter \qquad units

Test Prep

(5) Taylor used 64 feet of fencing to enclose a square pen for his dog. How long is each side of the pen?
Explain how you know.
\qquad
\qquad

Area of Parallelograms

Find the area of each parallelogram.
Record the area in square centimeters ($\mathbf{s q} \mathbf{c m}$).

Base 3 cm
Height 3 cm

Solve the problem.

(5) A rectangular field measures 12 feet by 8 feet. A farmer needs to know the area in order to buy seed. What is the area?

Test Prep

6. The area of the large shaded rectangle is 1 . What fraction can you write for the area of the shaded triangle? Explain.

Area is 1

Measuring to Find Areas of Parallelograms

Cut out the ruler on the right, if needed. Measure the sides and height of each parallelogram to the nearest cm. Record the area and perimeter for each figure.

Test Prep

(3) Mario noticed that if he put 4 stickers on each page of his sticker album, he would have 2 left over. If he put 3 on each page, there would also be 2 left over. Mario had more than 10 stickers, but fewer than 30 stickers. How many stickers did he have?
A. 12 or 26 stickers
B. 14 or 26 stickers
C. 14 or 21 stickers
D. 13 or 25 stickers

Area of Triangles and Trapezoids

Find the area and perimeter of each figure using the (approximate) measures given.

Base $\overline{B C} 2 \mathrm{~cm}$
Height 2 cm
Side $\overline{A B} \quad 2 \mathrm{~cm}$
Side $\overline{A C} 3 \mathrm{~cm}$

Area \qquad
Perimeter \qquad

Base $\overline{\mathbf{G J}} 2 \mathrm{~cm}$
Base $\overline{\boldsymbol{H I}} 4 \mathrm{~cm}$
Height 2 cm
Side $\overline{\mathbf{G H}} 2 \mathrm{~cm}$
Side $\bar{J} \quad 3 \mathrm{~cm}$
Area \qquad
Perimeter \qquad

Base $\overline{\boldsymbol{D F}} 2 \mathrm{~cm}$
Height 3 cm
Side $\overline{D E} 3 \mathrm{~cm}$
Side $\overline{E F} 4 \mathrm{~cm}$
Area \qquad
Perimeter \qquad

Base $\overline{K L} 2 \mathrm{~cm}$ Base $\overline{M N} 4 \mathrm{~cm}$

Height 3 cm
Side $\overline{K N} 4 \mathrm{~cm}$
Side $\overline{\boldsymbol{L M}} 3 \mathrm{~cm}$
Area \qquad
Perimeter \qquad

Test Prep

(5) Mr. Howe's rectangular garden has an area of 24 square feet. One of these could NOT be the length of the fence around the garden. Circle it. Explain how you know.
16 feet
20 feet
22 feet
28 feet
\qquad
\qquad

Area and Perimeter of Other Polygons

Use measurements to the nearest centimeter to find the perimeter. Use a ruler to draw lines showing how you would split each polygon into triangles to find its area.
(1)

Perimeter \qquad
2

A. w
B. y
C. z
D. x
(4) Which polygon does NOT have at least 2 lines of symmetry?
A. square
C. right triangle
B. equilateral triangle
D. rectangle

