\qquad

Adding and Subtracting Fractions with Like Denominators

Shade the bars to show the sums. Complete the number sentences. Change improper fractions to
 mixed numbers.
1

Use the pictures to complete the number sentences.

3

Test Prep

(5) The base of a parallelogram is two times its height. If the base is 12 centimeters, what is the area? Explain.

More Adding and Subtracting Fractions with Like Denominators

Write fractions to complete the number sentences.

Test Prep

(7) Round the numbers 49.03 and 29.95 to the nearest tenth. What is the difference between the rounded numbers?
A. 19.1
B. 20.9
C. 19
D. 20
(8) Which number is NOT equivalent to $4 \frac{8}{9}$?
A. $\frac{44}{9}$
B. $3 \frac{16}{18}$
C. $4 \frac{16}{18}$
D. $\frac{88}{18}$

Stories About Adding and Subtracting Fractions

You may use the picture to help you solve both Problems 1 and 2.

Solve both problems and write number sentences to match the solutions.
(1) Felicia spent $\frac{6}{12}$ of the daylight hours in school and $\frac{4}{12}$ of them on homework, soccer, and household chores. What fraction of the daylight hours might she use in any way she pleases?

Number sentence(s):
(2) Erik set out $\frac{7}{12}$ of a dozen donuts as snacks for his friends. What fraction of the dozen did he leave for later?

Number sentence(s):

Test Prep

(3) Which is NOT the same as $\frac{2}{6}+\frac{2}{6}$?
A. $\frac{4}{12}$
B. $\frac{1}{3}+\frac{1}{3}$
C. $\frac{4}{6}$
D. $\frac{2}{3}$
(4) Which number would NOT be a common denominator for 6 and 9?
A. 12
B. 54
C. 18
D. 36
\qquad

Adding and Subtracting Unlike Things

Conversion Key

$1 \mathrm{lb}=16 \mathrm{oz}$	$1 \mathrm{hr}=60 \mathrm{~min}$	$1 \mathrm{~L}=1,000 \mathrm{~mL}$	$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{yd}=3 \mathrm{ft}$	$1 \mathrm{~min}=60 \mathrm{sec}$	$1 \mathrm{~km}=1,000 \mathrm{~m}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$

Complete the number sentences using the conversion key above.

(1) $8 \mathrm{yd}+15 \mathrm{ft}=\ldots \mathrm{yd}$
(2) $3 \mathrm{lb}-14 \mathrm{oz}=\ldots \mathrm{oz}$
\longrightarrow
(3)

$$
\mathrm{m}+12 \mathrm{~cm}=412 \mathrm{~cm}
$$

(4) $2 \mathrm{hr}-$ \qquad $\min =40 \mathrm{~min}$
\qquad in.
(6) $12 \mathrm{~m}+4,000 \mathrm{~cm}=$ \qquad cm
\qquad $\mathrm{hr}+120 \mathrm{~min}=300 \mathrm{~min}$
(8) $3,000 \mathrm{~mL}-1 \mathrm{~L}=$ \qquad L

Test Prep

(2) Jewell has 40 feet of fencing to put around a garden. What are the dimensions of the garden with the largest possible area? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad

Adding and Subtracting Fractions with Unlike Denominators

Add or subtract fractions of an hour and find the

 number of minutes.(1) $\frac{1}{2}$ of an hour $=\square \min$, or $\frac{\square}{60}$ of an hour
$\frac{1}{3}$ of an hour $=\square$ min, or $\frac{\square}{60}$ of an hour
$\frac{1}{2}-\frac{1}{3}=\frac{\square}{60}-\frac{\square}{60}=\frac{\square}{60}$ of an hour, or \square min
(2) $\frac{3}{4}$ of an hour $=\square$ min, or $\frac{\square}{60}$ of an hour $\frac{2}{3}$ of an hour $=\square$ min, or $\frac{\square}{60}$ of an hour $\frac{3}{4}+\frac{2}{3}=\frac{\square}{60}+\frac{\square}{60}=\frac{\square}{60}$ of an hour, or \square min

Test Prep

(3) Josie has a rectangular piece of paper that is 8 inches by 10 inches. She cuts the rectangle into two congruent triangles. What is the area of each triangle? Explain.

Name \qquad
\qquad

Stories with Fractions

(1) $\frac{3}{5}+\frac{1}{5}=\square$
(2) $\frac{7}{9}-\frac{4}{9}=\square$
(3) $\frac{4}{3}+\frac{4}{3}=\square$
(4) $\frac{6}{5}-\frac{3}{5}=\square$
(3) $\frac{1}{2}+\frac{1}{4}=\square$
(6) $\frac{1}{4}-\frac{1}{8}=\square$
(2) $\frac{2}{3}+\square=1$
©
$\square+\frac{5}{7}=10$
(2 $1 \frac{1}{3}+7 \frac{1}{6}=\square$
(10) $5 \frac{3}{4}-4 \frac{1}{3}=\square$
(13) $11 \frac{4}{5}-8 \frac{1}{2}=\square$
(12) $6 \frac{1}{4}+4 \frac{5}{6}=\square$

Test Prep

(13) The sum of $\frac{3}{5}+\frac{2}{3}$ is \ldots
(14) Which of the following is NOT equal to $\frac{1}{2}$?
A. less than $\frac{1}{2}$
C. more than 1
B. $\frac{5}{8}$
D. $\frac{6}{15}$
A. $\frac{1}{3}+\frac{1}{6}$
B. $\frac{7}{10}-\frac{1}{5}$
C. $\frac{2}{7}+\frac{3}{14}$
D. $\frac{3}{4}-\frac{1}{8}$

Using Area to Multiply Fractions

Fill in the blanks and find the shaded area to multiply the fractions.

$$
\frac{2}{3} \times \square=\square
$$

B

Add.
5
$\frac{2}{3}+\frac{2}{3}=\frac{4}{3}$
(6) $\frac{5}{6}+\frac{3}{4}=\square+\square=$ \square

Test Prep

(2) Trey says that all parallelograms are rectangles. Do you agree? Explain.
\qquad

Using Other Models to Multiply Fractions

Use the dot sketches to complete the sentences.

1

3

$$
\frac{4}{5} \times \frac{3}{4}=\square
$$

(5) $\frac{2}{3}+\frac{3}{5}=\square+\square=\square$
(7) $\frac{3}{4}$
$+\frac{1}{4}=$ \square

2

$$
\frac{3}{4} \times \frac{1}{4}=\square
$$

(4)

$$
\frac{1}{6} \times \frac{3}{5}=\square
$$

(6) $\frac{4}{5}+\frac{3}{4}=\square+\square=\square$
(8) $\frac{1}{6}+\frac{3}{5}=\square+\square=\square$

Test Prep

-

1 square meter has been divided into 12 equal parts as shown. Which of the following is NOT equal to the area of the shaded rectangle?
A. $\frac{1}{2} \mathrm{sq} \mathrm{m}$
B. $\frac{3}{4} \mathrm{~m} \times \frac{2}{3} \mathrm{sq} \mathrm{m}$
C. $\frac{17}{12} \mathrm{sq} \mathrm{m}$
D. $\frac{6}{12} \mathrm{sq} \mathrm{m}$

Fractions of Quantities

(1) The input is 10 cents. Write the outputs (the number of cents) in the white boxes.

10 Cents | $\frac{1}{10}$ | $\frac{1}{5}$ | $\frac{1}{2}$ | $\frac{2}{10}$ | $\frac{2}{5}$ | $\frac{2}{2}$ | $\frac{3}{10}$ | $\frac{3}{5}$ | $\frac{3}{2}$ | $\frac{4}{10}$ | $\frac{4}{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |

$\frac{4}{2}$	$\frac{5}{10}$	$\frac{5}{5}$	$\frac{10}{20}$	$\frac{6}{10}$	$\frac{15}{10}$	$\frac{1}{1}$	$\frac{7}{10}$	$\frac{2}{2}$	$\frac{5}{5}$	$\frac{12}{20}$	$\frac{10}{10}$	$\frac{6}{15}$	$\frac{9}{15}$

Complete each sentence.

$$
\frac{2}{5} \text { of } 10=\square
$$

(3)

$$
\frac{12}{20} \text { of } 10=\square
$$

Test Prep

(6) Sage divided 48,288 by 48 and got a quotient of 106 . She was worried that she might have made a mistake. All of these are reasonable ways to check her answer EXCEPT:
A. Use a calculator to multiply 48×106.
B. Round 48 to 50 and 106 to 100 , multiply 50×100, and compare the product to 48,288 .
C. Multiply 48×100 and compare it to the dividend 48,288 .
D. Use a calculator to multiply $48 \times 48,288$.
\qquad
\qquad

Stories About Multiplying Fractions

(1) Judy wanted to plant a flower garden in the corner of her front yard. She told her parents that she would need a section that was one-sixth by one-fourth of the front yard.

What fraction of the front yard did she need for her flower garden? \square

Show how you got your answer.

Complete the number sentences.
Use another sheet of paper to make sketches if you wish.

Test Prep

(10) Mackenzie wants to lay floor tile in a kitchen that measures 12 ft by 14 ft and a hallway that measures 4 ft by 12 ft . What is the total area to be covered? Explain.
\qquad
\qquad
\qquad
\qquad

