\qquad

Transforming Two-Dimensional Nets into ThreeDimensional Figures

(1) Measure to the nearest $\frac{1}{2}$ inch.
(2) Total area of the net:
\qquad
\qquad
\qquad

Describing Three-Dimensional Figures

(1) Find one pair of nets that can be folded into the same three-dimensional figure.
\qquad
\qquad

2
Describe the three-dimensional figure that either of those nets will make by saying how many faces, vertices, and edges it has.
\qquad
\qquad
(3) Look at the line segments (both dotted and solid) in a net, and think about what happens when you fold that net and tape the edges. How can you predict the number of edges a three-dimensional figure will have by looking at a net?

Sorting Three-Dimensional Figures

Find the 6 polyhedra in your class collection that are neither prisms nor pyramids. Use them to help you complete the page.
(1) Find the 2 three-dimensional figures that have all the following attributes and write their letters on the lines below.

* two parallel, polygonal faces that are not congruent
other faces are not parallelograms or triangles
more vertices than faces

2 Three-dimensional Figures J and M may be called antiprisms. Write some attributes that describe both of these shapes.

- \qquad
\qquad
\qquad
\square \qquad
\qquad
\qquad

V \qquad
\qquad
\qquad

Name \qquad Date \qquad

Volume of Rectangular Prisms

You already know that a certain length, n, may represent the length of a line segment, the side of a square, and the edge of a cube.

(1) Complete the table using positive numbers only.

n	1									
n^{2}		36	25	81		16	64		49	
n^{3}					8			27		1000

(2) The symbol $\sqrt{ }$ means "square root."

If n is not a negative number, then $\sqrt{n^{2}}=n$.
Write the square roots.
$\sqrt{25}=$ \qquad

$$
\sqrt{100}=
$$

$\sqrt{144}=$
$\sqrt{225}=$ \qquad

$$
\sqrt{625}=
$$

(3) The symbol $\sqrt[3]{ }$ means "cube root." $\sqrt[3]{n^{3}}=n$.

Write the cube roots.
$\sqrt[3]{64}=$

$$
\sqrt[3]{27}=
$$

$\sqrt[3]{512}=$ \qquad
$\sqrt[3]{216}=$ \qquad

$$
\sqrt[3]{1000}=
$$

\qquad

$$
\sqrt[3]{729}=
$$

\qquad

Volume of Prisms

Imagine you have this wooden block (ThreeDimensional Figure A). Each side is a parallelogram. You need to find its volume. It is painted in two colors, is quite solid, and cannot be taken apart.

But you can imagine taking it apart and rearranging the parts to make this other three-dimensional figure.

Figure B

Although you have imagined Figure B, you only have Figure A to measure.

Tell what measurements you would make on Figure A, and what you would do with those measurements. Explain why your method will give the correct volume of Figure A.

Name \qquad Date \qquad

Area of Nets

(1) These three figures all have the same height and the same base length. The area of one of them is shown. Write the areas of the other two.

sq cm

___ sq cm

2 Again, all three figures have the same height and base length. The area of one is shown. Write the areas of the other two.

(3) All three figures have the same height. The area of one is shown. Write the areas of the other two.

(4) What is the total area of all the faces shown on this net of a rectangular prism?
\qquad sq cm

Surface Area of Polyhedra

How does volume change if we double the dimensions?

(1) On the LAB page, you investigated how area changes as the dimensions are doubled. The data you generated on that page will also allow you to make a conjecture about how area changes when the dimensions are quadrupled.

Look back at those numbers and write what you think might be the rule.

When the dimensions are multiplied by \qquad

Now perform some experiments to see how volume changes when the dimensions are doubled.

2) From the class collection, choose a polyhedron for which you can calculate the volume easily. Record its letter and its volume (showing how you calculated that volume)

Three-Dimensional Figure: \qquad Volume: \qquad
(3) Double each dimension and calculate the new volume, again showing how you did it.

VOLUME of a similar polyhedron
with all dimensions doubled:
(4) Repeat this experiment with a new polyhedron.

Three-Dimensional Figure: \qquad Volume: \qquad
VOLUME of a similar polyhedron
with all dimensions doubled:
(5) State a conjecture. How do the volumes compare when the dimensions are doubled?

When the dimensions are doubled, \qquad

Comparing Volume and Surface Area

Fill in the missing numbers and look for the patterns.

Column A
(1) Prism base:

Prism height $=\underline{3}$
Volume: \qquad
(2) Prism base:

Prism height $=\underline{4}$
Volume: \qquad
(3) Look at the area of the base of each prism.
(4) Look at the volume of each prism.

Column B
All dimensions in Column A are doubled.

Prism base:

Prism height $=$ \qquad
Volume:
Prism base:

Prism height $=$ \qquad
Volume: \qquad
The area of the bases of the prisms in Column B
is \qquad times the area of those in Column A.

The volume of the bases of the prisms in Column B
is \qquad times the volume of the prisms in Column A.

Column C
All dimensions in Column A are multiplied by 10
Prism base:

Prism height $=$ \qquad
Volume: \qquad
Prism base:

Prism height $=$ \qquad
Volume: \qquad
The area of the bases of the prisms in Column C
is \qquad times the area of those in Column A.

The volume of the bases of the prisms in Column C
is \qquad times the
volume of the prisms in Column A.

