\qquad

Transforming Two-Dimensional Nets into Three-Dimensional Figures

Describing Three-Dimensional Figures

(1) Cut out the net and assemble the three-dimensional figure.
2. Complete the chart and the sentences.

Faces	
Vertices	
Edges	

$F+V=$ \qquad $F+V-E=$ \qquad

Test Prep

(3) Write two different prime numbers.

Explain how you know the numbers are prime.
\qquad
\qquad

Sorting Three-Dimensional Figures

(1) Cut out each net and fold it along the dotted lines to make a three-dimensional figure.
(2) Fit these two figures together (by matching two congruent faces together, one from each figure) to make a new figure.

See what new figures you can make.
How many ways can you combine these to make a prism?
How many ways can you combine them to make a pyramid?

Volume of Rectangular Prisms

Find the area of the base and the volume of each of these rectangular prisms built out of centimeter cubes.

Area
of base: \qquad sq cm

Volume: \qquad cu cm

Area
of base: \qquad
Volume: \qquad

2

Area
of base: \qquad
Volume: \qquad

5

Area
of base: \qquad
Volume: \qquad
(3)

Area
of base: \qquad
Volume: \qquad

Area
of base: \qquad
Volume: \qquad

Test Prep

(7) Which of the following is NOT true about this rectangular prism?
A. It has more vertices than faces.
B. It has 3 pairs of parallel faces.
C. Its volume is 8 cubic units.
D. It has 2 congruent, square faces.

(8) What is the area of the square base?
A. 2 sq units
B. 4 sq units
C. 8 sq units
D. 16 sq units
\qquad
\qquad

Volume of Prisms

Each diagram shows the base of a triangular prism.
Use the dimensions to compute the volume.
(1)

Height of Prism: 5
Volume: \qquad cu units

Volume: \qquad

Height of Prism: 4
Volume: \qquad
(4)

3
3 5

Test Prep

The height of a triangular prism is $\mathbf{1 0} \mathbf{~ c m}$.
Its triangular base has a height of $4 \mathbf{c m}$ and a length of $\mathbf{6} \mathbf{c m}$.
(5) What is the area of the base?
A. 12 sq cm
B. 12 cu cm
C. 24 sq cm
D. 24 cu cm
(6) What is the volume of the prism?
A. 240 sq cm
B. 240 cu cm
C. 120 sq cm
D. 120 cu cm

Area of Nets

The answers are given. Write questions to match.

Answers	Questions
(1) Find the height of this two-dimensional figure and the length of its base, and then multiply those two numbers.	
22 Find the areas of all the faces and	
then add them up.	
3 It is a three-dimensional figure with a base that could be any polygon. All the other faces are triangles that meet at a common vertex.	
(4) Find the height of this three-	
dimensional figure, and find the	
length and width of the rectangular	
base. Multiply those three numbers.	

Test Prep

(6) How many edges does a rectangular prism have?

Explain what an edge of a prism is.

Surface Area of Polyhedra

Puzzle it out.

Workspace

(1) I am a rectangular prism.
\checkmark My volume is 30 cu cm .
\checkmark My shorter dimensions are 2 cm and 3 cm .
What is my longest dimension? \qquad
2. I am a triangle.
\checkmark A parallelogram whose base and height are the same as mine has an area of 9 sq in.

What is my area? \qquad
(3) I am a triangular prism.

My volume is 24 cu cm .
My surface area is 60 sq cm .
\checkmark My height is 4 cm .

* I am cut into two congruent, triangular prisms, each 2 cm high.

What is the volume of each? \qquad
(4) I am a trapezoid.
\checkmark My area is 5 sq cm .
The lengths of my bases are 1 cm and 3 cm .
What is my height? \qquad

Test Prep

(5) Mabel drew this trapezoid.

Which two line segments appear to be parallel?
A. a and b
C. a and d
B. a and c
D. b and d
\qquad

Comparing Volume and Surface Area

Use Activity Master 110: Net J to help you complete this page.

(1) What is the area of Net J? \qquad
2 Explain why the surface area of the three-dimensional figure you make from this net should be the same as the area of the net.
\qquad
\qquad
(3) How many faces does the net have? \qquad
(4) Explain why the number of faces on the three-dimensional figure will be the same as the number of faces on the net.
(5) How many edges does the net have? \qquad
(6) Explain why the number of edges on the three-dimensional figure will not be the same as the number of edges on the net.
\qquad
\qquad
\qquad
(7) How many vertices are on the net? \qquad
(8) Explain why the number of vertices on the three-dimensional figure will not be the same as the number of vertices on the net.

NOTE: You can cut out the net and build the threedimensional figure to help you answer the questions above.

