Introducing Mobiles

Complete the balanced mobiles.

Total Weight: _____

Total Weight: _____

4

Total Weight: _____

Balancing Mobiles

Solve these mobile puzzles.

Total Weight: 72

2

Total Weight: 48

B

Total Weight: 96

4

Total Weight: 48

Equations for Mobiles

Total Weight: 84

Write three equations that match this mobile.

Balance Puzzles

Use all the balances in a problem to find the weights of each kind of block. You must use the information in one balance to help you solve another!

Number Tricks

Pick any four consecutive counting numbers. (for example: 8, 9, 10, 11 or 25, 26, 27, 28)

- Combine the four numbers to make an equation, following these rules:
 - Use each number once.
 - Use the numbers in any order.
 - Use one = sign.
 - Use any of the signs +, -, \div , \times in any combination.

Find a second equation that you can make with the same four numbers.

What if you had picked a different set of four consecutive counting numbers? Use shorthand, words, or both to describe rules for making two different equations that will work for any four consecutive counting numbers.

Making Diagrams

Find the area of each section in the diagrams. Then find the total area.

0

Area =
$$x^2$$
 +

5

6

Equations for Stories

Juan's Bicycle Shop sells both bicycles and tricycles.

One day there were B bicycles and T tricycles.

- A Write an equation for the total number of wheels, *W*, on *B* bicycles and *T* tricycles.
- B Write an equation for the total number of seats, **S**, on **B** bicycles and **T** tricycles.
- Juan counted 35 wheels. On the graph below, mark with dots all the possible combinations of bicycles and tricycles. (One combination has been marked for you—one bicycle and eleven tricycles.)
- Juan also counted 15 seats. Mark with Xs the possible combinations that give 15 seats. (Two combinations have already been marked.)
- How many bicycles and tricycles were there?

© Education Development Center, Inc.