\qquad

Transforming Two-Dimensional Nets into Three-Dimensional Figures
 NCTM Standards 3, 7, 8, 9, 10

Look at each three-dimensional figure and answer the questions by writing yes or no.

Does this three-dimensional figure appear to have any faces that are

parallelograms?	perpendicular?	
triangles?	-	congruent?
trapezoids?	-	parallel?

2

Does this three-dimensional figure appear to have any faces that are

parallelograms?		perpendicular?	
triangles?	-		
trapezoids?	-		
congruent?			

Does this three-dimensional figure appear to have any faces that are
parallelograms? \qquad triangles? ___ trapezoids? \qquad
perpendicular? \qquad
congruent?
parallel?

Use the small copy of your net.

(4) Tape or glue the net here.

Describe your net.
\qquad
\qquad
\qquad
\qquad
\qquad

Challenge Tell how you could find the total area of the net.
\qquad

Chapter 12

Lesson 2

Describing Three-Dimensional Figures

NCTM Standards 2, 3, 7, 8, 9, 10
(1) Choose a three-dimensional figure and record its letter here: \qquad
Describe the faces of your three-dimensional figure and tell if any faces appear to be congruent, parallel, or perpendicular.
\qquad
(2) Complete the chart to show how many faces, vertices, and edges your three-dimensional figure has.

Faces	
Vertices	
Edges	

Add the number of faces and vertices:
F — V \qquad
From that sum, subtract the number of edges:
F—V—E] \qquad
(3) Find out what other students got as their answer for Problem 2. Are you surprised? Based on what you find out, write a sentence or two stating a possible conclusion about polyhedra.
\qquad
\qquad
(4) Pick any prism. Choose one vertex of that prism. Count how many faces meet at that vertex.

A Is there any vertex of that prism at which a different number of faces meet?

B Would your answer be different if you chose a prism with a different base? Explain why. \qquad
\qquad
\qquad
(5) Pick any pyramid that has one non-triangular face. Choose one vertex of that pyramid. Count how many faces meet at that vertex.

A Is there any vertex of that pyramid at which a different number of faces meet?

B Would your answer be different if you chose a pyramid with a different non-triangular base? Explain why.
\qquad
\qquad
(6) Challenge Sketch one of the three-dimensional figures you used on this page.
\qquad

Sorting Three-Dimensional Figures
 NCTM Standards 3, 7, 8, 9, 10

For each three-dimensional figure, write the letters of all attributes that apply. Some attributes apply to more than one figure.

(1) Pyramid
\qquad
(2) Cone
(3) Prism
\qquad
(4) Sphere
(5) Cylinder

Attributes

A All its faces are polygons.
B It has at least one circular base and one other surface.

C It has more vertices than faces.
D The number of vertices equals the number of faces.

E It is a polyhedron.
F All its faces are polygons, and all but one of the faces share a vertex.

G It has two parallel, congruent bases.

H It has no vertices or faces.

- One of its faces can be any polygon. The rest are triangles.

J All points on this figure are the same distance from a single point.

K It is two-dimensional.
L It is three-dimensional.
m All its faces must be rectangles.
N All its faces must be triangles.
(6) Describe the differences between pyramids and prisms. Be sure to use attributes such as congruent, parallel, and perpendicular.
\qquad
(7) Challenge Look at the polyhedra your class sorted that are neither prisms nor pyramids. Describe some of the attributes of these three-dimensional figures (G, H, $\mathrm{I}, \mathrm{J}, \mathrm{M}, \mathrm{Y}$) that make them neither prisms nor pyramids.
\qquad

Find the area of the base and the volume of each rectangular prism built out of inch cubes.
$\nabla_{\square} 1$ cu in. (1)

Area of base: \qquad sq in.

Area of base: \qquad Area of base: \qquad
Volume: \qquad

Area of base: \qquad
Volume: \qquad
(3)

Area of base: \qquad
Volume: \qquad
©

Area of base: \qquad
Volume: \qquad
©

Area of base: \qquad
Volume: \qquad

Find the area of the base and the volume of each rectangular prism built out of inch cubes.

\square $1 \mathbf{c u}$ in.

(10)

(11)

Area of base: \qquad
Volume: \qquad
(12)

Area of base: \qquad
Volume: \qquad
Area of base: \qquad
Volume: \qquad
(13)

Area of base: \qquad
Volume: \qquad

Challenge This shape is different. It is related to the rectangular prism shown in Problem 13. Figure out its volume and explain your thinking.

Volume: \qquad
\qquad
Chapter 12

Lesson 5

Volume of Prisms

NCTM Standards 1, 3, 4, 7, 9, 10

Each right triangular prism is sitting on its base. Use the dimensions to compute the volume.

1

Show your work.

Volume: \qquad

Show your work.

Volume: \qquad
2
(3)

Volume: \qquad

Each right triangular prism is sitting on a face that is not its base. Use the dimensions to compute the volume.
(4)

Volume: \qquad

5

Show your work.

Volume: \qquad
(6) Challenge Show two ways to calculate the volume of this right triangular prism.

Volume: \qquad
\qquad
Chapter 12

Lesson 6

Area of Nets
 NCTM Standards 1, 3, 4, 6, 7, 8, 9, 10

Use a net for Figures AA, BB, or CC.

(1) Tape or paste the small copy of the net here.
(2) Label your small net to show the true dimensions (full-size) of each face of your three-dimensional figure. Measure to the nearest half-inch.
(3) Label your small net to show the area of each face of your three-dimensional figure.
(4) What is the total area of your large net?

Example:

Solve the problems.

(5) Jonah was not sure he had enough wrapping paper to wrap a gift box. He measured the box and wrote the measurements on a net sketch. How much wrapping paper does he need to cover the box?

6 Courtney made only a few measurements to figure out how much wrapping paper she needed to wrap a tall, rectangular prism-shaped box. The small rectangular base measured 5 in . by 10 in . The height of the box is 12 in . How much wrapping paper does she need?

Use this net if you wish.
(7) Challenge Tell how you would find the total area of a net of a triangular prism. Tell all the measurements you would make and how you would compute the area with those measurements.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 12

Lesson 7

Surface Area Polyhedra
 NCTM Standards 1, 3, 4, 6, 7, 8, 9, 10

Find the surface area of each polyhedron using the measurements (in inches) shown on the nets.

Surface area: \qquad sq in.

Double the length of each dimension of each polygon. Record the area inside each polygon.
B

2 | 2 |
| :---: |
| 2 |
| 2 |

(4)

You know what happened to the dimensions in each case: they doubled. What happened to the area in each case?
(6) Challenge What happens to the surface area of a polyhedron when you double each dimension of each face? Record the doubled dimensions and find both surface areas.

Surface area:

Surface area:

How do the two surface areas compare?
\qquad

Lesson 8

Comparing Volume

 and Surface AreaNCTM Standards 1, 3, 4, 6, 7, 9, 10

The floor of Taylor's room measures 12 ft by 12 ft . The height from floor to ceiling is 10 ft .

(1) Taylor wants to paint the four walls of his room with some paint he already owns. It says on the can that a gallon of paint will cover 450 sq ft . If the can is full, does he have enough paint to paint the four walls?

Show how you know.
2. If he buys another gallon of the same paint, will he have enough to paint the walls and ceiling?
\qquad
(3) Opening a window will give Taylor enough ventilation so that he is not bothered by the paint fumes, but he wants to know how much air is in the room itself. How many cubic feet of air does the room contain?

Show how you know.

Solve the problems. Draw a diagram if you wish.
The volume of a room is $1,200 \mathrm{cu} \mathrm{ft}$, and the height from floor to ceiling is $\mathbf{1 0} \mathbf{f t}$.
(4) What is the area of the floor?

Show your computations.
\qquad

What is the area of the
flat ceiling?
How do you know?
\qquad
(6) What might be the measurements of the floor?
\qquad
(7) Using those measurements, what is
the area of each wall?

Wall: \qquad Wall: \qquad

Wall: \qquad Wall: \qquad

8 Challenge If all the dimensions of the room were doubled, how would the volume change? Explain.
\qquad
\qquad
\qquad

Problem Solving Strategy

Guess and Check
NCTM Standards 1, 2, 3, 4, 6, 7, 8, 9, 10

You may use a calculator and the tables to help you solve the problems.

(1) Hope has a cube-shaped box. Its volume is 500 cubic units.
 About how many units long is each edge?

Edge \boldsymbol{n}	Volume \boldsymbol{n}^{3}	\square or Target Volume
		$\bigcirc 500$

(2) The volume of a large ice cube is 100 cubic centimeters. What is the approximate length of one edge?

Edge n	Volume n^{3}	\square or Target Volume
		$\bigcirc 100$

(1) Henry, Jamie, and Sam are three friends. Their ages are consecutive numbers. The product of their ages is 2,145 more than the sum of their ages. Sam is the oldest. How old is Sam?
A. 12
B. 13
C. 14
D. 15
(2) The surface area of a cube is 150 square inches. What is the volume of the cube?
A. 150 cubic inches
B. 125 cubic inches
C. 100 cubic inches
D. 75 cubic inches

Show What You Know

Solve each problem. Explain your answer.
(3) Darla has a square beach towel that measures 96 inches on each side. She folds it in half, then folds it in half again, and finally folds it in half again. What is the area that the folded towel would cover? Explain how you solved the problem.
\qquad
(4) Students in the architecture club are using cubes to build a model of an apartment house. Each cube represents one room. Every outside wall of a cube will have one window. If the students use 27 cubes, what is the least number of windows that is possible? What is the greatest? Explain how you solved the problem.
\qquad

chapter 12

Review/Assessment
 NCTM Standards 1, 2, 3, 4, 6, 7, 9, 10

Look at each three-dimensional figure and answer the question by writing yes or no. Lesson 1

Does this figure appear to have any faces that are

parallelograms?	perpendicular?
triangles?	congruent?
trapezoids?	parallel?

Does this figure appear to have any faces that are
parallelograms? \qquad perpendicular? \qquad congruent?
parallel?

3

How may faces, vertices, and edges does a triangular prism have? Lesson 2
\qquad faces \qquad vertices \qquad edges

For each three-dimensional figure, write the letters of all attributes that apply. Some attributes apply to more than one three-dimensional figure.

Lesson 3
(4) Pyramid \qquad
(5) Cone

6 Cylinder \qquad
(7) Prism

Attributes

A All its faces are polygons.
B It has at least one circular base.
C It has two parallel, congruent bases.
D All of its faces but two must be parallelograms. The remaining two faces can be any polygon.
E All of its faces but one must be triangles. The remaining face can be any polygon.

Find the area of the base and the volume of each rectangular prism built out of cubes．Lesson 4
8

Area of base：
\qquad
Volume：
－

Area of base：
\qquad
Volume：
\qquad

This right triangular prism is sitting on its base．
Use the dimensions to compute the volume．Lesson 5
（10）

Show your work．

Use the dimensions shown on the net to find the surface area of each three－dimensional figure．Lessons 6 and 7

（12）

Solve the problem．Lesson 9
（13）Brad has a cube－shaped box．Its volume is 400 cubic centimeters． To the nearest whole centimeter， how long is each edge of the box？
（14）Keaton wants to plant a square garden with an area of 50 square feet．To the nearest foot，how long should she make each side of the garden？

