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Abstract 
Ideas can come from any kind of experience, but language is a key part of learning. We 
commonly rely on two languages for mathematics: the one we speak (and its written form) 
serves our needs for expressing the context of our problems and the nature of our thinking; and 
conventional mathematical notation (CMN) lets us record mathematical expressions, equations 
and formulas. Each is essential. But each also has limitations, especially for young learners. 
With support from the National Science Foundation, EDC is researching the use of programming 
as a third language for children to use in expressing, exploring, and making mathematics. We 
study children’s use/misuse of the first two languages (spoken natural language and CMN) to 
inform the design of a set of mathematical “maker spaces,” microworlds in which students in 
grades 2–6 use programming in their regular lessons as a language for learning mathematics. 
Our microworlds’ goals are driven by math, not coding, but preserve conceptual coherence and 
developmental appropriateness in the programming and computer-science/computational-
thinking (CS/CT). Topic-centered approaches in mathematics classrooms hide interconnections 
within mathematics, removing opportunities for surprise and delight and rendering the subject as 
non-creative. The microworlds we’ve built and those we’re proposing aim to satisfy schools’ 
topical orientation but without siloes, creatively using and foreshadowing other mathematical 
learning. They are designed and tested to fit easily within regular mathematics classroom study.  
In this paper we show how these microworlds are inspired and informed by the way children, 
especially young children, use linguistic pattern in spoken language to build mathematical ideas. 
We also show how our design aims to circumvent the challenges beginners face with CMN, 
mathematics’ written language, which provides the precision and concision natural language 
lacks and that mathematical exploration requires but which sometimes diminishes clarity for 
young children rather than enhancing it. We give brief descriptions of two (of four) microworlds 
that we designed and already used with over 200 second graders, and brief descriptions of how 
we are extending these to support later-grade learning. These illustrate how programming can 
be a valuable third language for mathematics, supporting creative exploration, key content, and 
essential mathematical habits of mind. CS/CT develops in tandem, integrated into the 
mathematical thinking. In another paper (Goldenberg & Carter, submitted), we describe wholly 
new microworlds under co-development with 6th graders. 
The work described above uses careful observation to understand children’s use of language in 
mathematics and to guide the iterative redesign of our microworlds. That part of our work is an 
exploratory study, using no formal methodology. We are also conducting a more formal study of 
the effects of the microworlds on children’s learning—using cognitive interviews, video, and 
control classrooms—but that study is still in process and not reported here. 
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How programming can serve young children as a language 
for expressing and exploring mathematics in their classes 
At EDC, we are designing Math + C (thinkmath.edc.org), a set of mathematical “maker spaces” 
in which students use programming in their regular lessons in order to express, explore, and 
make the mathematics they are learning. These microworlds are driven by the math, not by 
coding. During AY 2018-2019, with support from the National Science Foundation, we 
developed and piloted four microworlds (and accompanying materials) with >200 7-year-olds in 
their in-school mathematics classes (Goldenberg, 2019; Goldenberg et al., submitted). We are 
continuing that research with >200 more 7-year-olds and are designing/testing similar materials 
for grades 3-5, again four microworlds each. Microworlds are tested both below and above the 
target grade, because early studies showed that this alternative experience changed the 
learning trajectories.1 Learning by making is different from learning on paper.  
New experimental microworlds for 6th graders are growing out of a collaboration of students, 
teachers, and a curriculum designer at EDC.  
Mathematical maker spaces for schools? Maker spaces2 are environments in which people 
are free to create with the available materials and tools. These are not just rooms with stuff; stuff 
alone doesn’t foster creativity. Maker spaces have domains: a “typical” maker space (is there 
such a thing?) might help one explore ideas for robots or for wood or plastic puzzles but not so 
much for poetry or mathematics. How might one design an elementary school mathematics 
maker space? 
The ability to use a maker space—to make in it—taps one’s prior experiences with tools and 
materials. We don’t even think of using a scissor—let alone a less ubiquitous tool—if we don’t 
know such things exist. Beyond that, we need some experience or help. Maker environments 
also have a culture. And rules (at the minimum, for safety), as all cultures do. They can be non-
coercive, non-didactic precisely because of a culture in which any person present is seen as a 
potential source of help, information or ideas. 
Our mathematical maker spaces are intended to live in school classrooms, where the cultures 
(due to constraints both “good” and “bad”) are quite different. Designing mathematical maker 
spaces so that teachers can integrate making into classwork at grade level imposes even more 
constraints.  
Our microworlds start with few tools and are limited to particular mathematical constructions, 
satisfying schools’ typically topical orientation but without siloes, connecting mathematical 
learning, and preserving opportunities for surprise and creativity. We’ve honed the process for 
getting 2nd graders familiar with the tools to take only 10 minutes gathered on the rug, mostly 
doing the demonstrating themselves. Then they can do puzzles we pose or explore freely and 
invent their own ideas and puzzles. Because the tools are programming blocks, students can 
also create new tools.  
Our programming microworlds are designed to support the mathematical content that teachers 
and schools deem most critical. We want children to experience material that is new to them just 
as mathematicians approach what’s new to them: experiencing surprise, becoming curious, 
playing, tinkering and researching, puzzling through, and extending rather than just memorizing.  

 
1 Even physical (motoric) milestones vary widely (including 4-month-olds standing erect independently 
without holding on!) depending on experience. “In contrast to the consistent and orderly progression 
implied by the [familiar] milestone chart,” the authors report, “the skills infants acquire, the ages they first 
appear, and their subsequent developmental trajectories are highly responsive to cultural and historical 
differences in childrearing practices and infants’ everyday experiences” (Rachwani, et al. in press). The 
order of acquisition of intellectual skills is also not immutable; experience matters.  
2 See, e.g., https://www.makerspaces.com/what-is-a-makerspace/ 
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Our microworlds use programming as a language for mathematics, inspired by the way children, 
especially young ones, use linguistic pattern in spoken language to build mathematical ideas. 
They also aim to circumvent the challenges beginners face with conventional mathematical 
notation (CMN), mathematics’ written language, which provides the precision and concision 
natural language lacks and that mathematical exploration requires. Microworlds we designed 
and used with children illustrate how programming as a third language for mathematics supports 
both creative exploration and essential content.   

Spoken language and mathematics 
It’s fascinating how children use their adept language-brains to build or make sense of early 
mathematical ideas. Natural language conveys the semantic/contextual settings for 
mathematical problems. It’s also the common way children share and refine their thinking. But, 
beyond classroom discourse, there’s yet another way—one that gets unfortunately little attention 
in curricula or pedagogy—that children, especially young children, use their language-brains to 
process mathematical ideas: linguistic pattern.  
We asked kindergarteners what they thought “five eighths plus five eighths” might be. One 
confidently chirped “Ten ayfs!! [pause] What’s an ayf?” (Goldenberg, et al. 2017). That’s correct, 
but linguistic, not “mathematical.” (More precisely, the boundary between mathematical and 
linguistic thinking may be blurry at that age.)  
We also asked kindergarteners to name the biggest numbers they could think of. Children 
offered “a hundred” or “infinity” or “a million,” but not “two-hundred” or “three-million” (although 
one said “infinity-googolplex”). When asked what two-hundred plus three-hundred might be, 
most confidently answered five-hundred. We interpret that as a linguistic rather than 
mathematical strategy because the same children responded to “a hundred plus a hundred” by 
saying “a hundred,” “a million” or “I have no idea.” “Hundred” simply meant “big number.” To 
some, a big number plus a big number is a big number. To others, big plus big is bigger. And to 
the sweet child who turned up her hands, smiled, and said “I have no idea,” a big number plus a 
big number could be anything. These children weren’t using the numberness of hundred; it was 
as if we asked what’s three goats plus two goats. But “what’s a goat plus a goat?” sounds 
unclear. Is it a trick? What’s being asked?  
Here’s another way children use linguistic strategies. In a game with second graders, they call 
out half of whatever number we state. We start with familiar facts—the idea is to teach, not 
stump. If they can halve six or eight they have no trouble with sixty, eighty or eight-thousand; 
and they feel proud to use such big numbers. For just a few minutes, so the activity doesn’t grow 
old, we mix these no-brainer numbers with others the children know, like halving ten, twenty, 
forty, four-hundred, twelve-million, repeating some for fun. Then we throw in eight-hundred-and-
six (still deliberately chosen to be clear) and many can halve that. We sometimes say, as if 
revealing a great secret, that “some people don’t realize that half of forty-eight is really half of 
forty and half of eight, but it is.” When we then ask a class what half of forty-eight is, roughly half 
answer twenty-four; most others answer twenty-eight. That non-random, common error identifies 
the problem: executive functioning, not math. The children are juggling five numbers—forty-
eight, forty, eight, twenty, and four—and that’s hard for 7-year-olds doing this for a first time. 
Impressively, if we say only “Great! I heard twenty-four and twenty-eight. One of those is 
correct!” without saying which is correct, children improve at halving 64, 86, 42, and six-million-
and-six. Why? And why does half of twenty-two remain a mystery for these same children? 
Second-graders love repeating this exercise for a minute or so a couple of times a day for 
several days. To “compute” half of forty-eight, all they need do is recite the numbers (half-of-
forty, half-of-eight) that they hear in their head. But half of twenty-two is not ten-one. Nothing 
about “eleven” sounds like half of twenty-two; less than ten minutes into their first try at halving 
wild numbers, their “mathematical” prowess remains mostly linguistic. 
Halving twenty-two requires a calculation—a simple one, but not just a linguistic act. After a few 
days with numbers that keep the steps feeling intuitive (but with no “instruction”), children are 
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ready for a new idea, not purely linguistic. They now understand twenty-two and can now halve 
fifty-four as twenty-five plus two. Halving seventy-four requires another step, halving seventy, so 
it waits for another day. Goldenberg, et al. (2015) report on high-schoolers for whom these child-
strategies had been drummed out. One girl for whom halving forty was insultingly easy 
responded “how should I know?!” when asked to halve forty-eight; prior math experience taught 
her that what isn’t memorized must be computed on paper. But the logic was easy to regain; she 
rose quickly to the top of where we want high-schoolers to be, and where too many are not.  
Why didn’t the second graders need to be told which answer was correct, as long as they knew 
one was? Young children appear to have a built-in cognitive (intuitive) analogue to the 
distributive property. Children aren’t, of course, factoring out goats (or hundreds or “ayfs”) to 
know that two goats plus three goats are five goats. Likewise, when asked to double , 
they draw  but aren’t thinking “distributive property.” Children don’t start out 
knowing that half of forty-eight is half-forty and half-eight, but that logic feels so familiar that even 
when they lose track and fumble the numbers, confirmation that one of 24 and 28 is correct lets 
them intuit which one. Seven-year-olds need to build skill at holding five or so numbers mentally 
and tracking manipulations of them (executive function) but they soon develop that ability and 
get quite good at halving and doubling, starting with easy numbers.  

Mathematics builds new knowledge from old. In elementary school arithmetic, we solve 26 × 4 
not by memorizing that fact, but by having some starting places (perhaps the standard set of 
facts, or perhaps 25 × 4) and applying mathematical logic (e.g., a standard school algorithm, or 
an ad hoc procedure) to derive the new result. The more mental facts we easily recall, the less 
work is needed for deriving new results, but acquiring and maintaining mental facts takes work. 
So, we strike a balance, memorizing some easy starting places.  
Memorized facts is one way. Linguistic strategies provide another. Laura, a 2nd grader learned to 
think of “twenty-eight” as a first and last name, like her own, and easily understood what remains 
if the last name (or first name) is removed. That’s not a mathematical process, but it’s also not a 
linguistic trick. Numbers aren’t born with names; we name them to make such computations 
easy. Understanding 28 − 8 that way, Laura readily computed 28 − 9, following the linguistic 
step with a mathematical one. Similarly, after out-loud counting 10 from twenty-three to thirty-
three and iterating to get forty-three, fifty-three, sixty-three, a child hears the linguistic pattern 
and anticipates seventy-three without counting. Adding nine can then use the linguistic pattern 
and adjust with an arithmetic step. 
These oral/aural linguistic patterns that children are so competent (and inclined) to find 
powerfully support some concepts and ideas of mathematics that written techniques and 
manipulative methods don’t make apparent or even obscure.  

Written language of mathematics 
Reading and writing CMN is not like reading and writing English. 
First, reading any text is different from nearly every other kind of visual skill. The ability to 
recognize familiar objects in unfamiliar positions isn’t born in, but infant brains quickly develop 
such essential geometric transformations, letting babies recognize a bottle even when the nipple 
doesn’t face them directly. This visual processing takes learning but becomes automatic. For 
reading and writing, children must suppress that hard-won, now-automatic skill; otherwise p, d, 
b, and q are all the same. Writing  and  interchangeably is normal, totally expectable at first. 
This is a reading-writing-only exception, following different rules from any other seeing. Attention 
to order also changes. We rarely care about order when listing three objects we see but 
understanding print requires it: was and saw are different. Mathematical print changes the rules 
again. While 315 and 513 are unequal, but 3 × 5 and 5 × 3 are equal. And worse, unlike prose 
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text, mathematical expressions are not read strictly left to right.3 Convention requires 
reading/processing both 5 + 4 × 2 and 5 × (4 + 2) right to left, a strain to teach and to learn. 
Worse yet, unlike prose text, mathematical notations are two-dimensional, requiring attention to 
both vertical and horizontal position. Students often encounter that first with graphs and charts. 
Later they see it even in CMN. The typically uneven size and level of children’s scrawls are just 
esthetic concerns; meaning isn’t affected. But in mathematics, 315, 315 and 315 mean different 
things. Young children don’t use those notations but do see  early. By middle school all these 
distinctions matter.  
A final example. Spoken (or printed, but spelled out as we do here), “five-eighths plus five-
eighths” generally evokes the correct “ten-eighths” response. But written !"+

!
" often evokes the 

canonical add-everything-in-sight wrong answer, even from bright eighth-graders. Similarly, 
some mathematical properties (like distributivity) seem essentially built into early cognition. Yet 
when that idea and its name are “introduced” in third grade (as commonly mandated in the U.S.), 
it is typically taught through a written string like 8 × 7 = 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 +
16 = 56. Far from adding precision or a new idea, this obfuscates what children already know. 
Processing such a string takes focus and effort, so it isn’t the optimal way to introduce ideas to 
an eight-year-old. In fact, despite your own mathematical fluency and adult cognition, probably 
even you zipped through it without reading closely enough to see if we typed it correctly. For a 
beginner, the cognitive load of decoding the notation obscures the idea. 
CMN, which we now take for granted, was a relatively recent invention; mathematical progress 
absolutely depended on it. The features that make it so valuable to mathematics are its 
concision and precision. But, for learners, this comes at a price. Concision removes redundancy. 
In speech and prose text, some redundancy helps understanding. Context helps a beginning 
reader recognize a word or infer its meaning. And in speech and prose text, minor imprecisions 
often don’t affect comprehension at all, which is on reason it is so difficult to proof-read a 
document and catch all the errors.4 In CMN, one missing or misplaced character changes the 
meaning.  
Primary teachers understand that invented spelling, technically “incorrect,” is evidence of the 
emerging (correct!) sense that letters encode specific speech sounds, progress from the pre-
schooler’s letter-salads that show that the child recognizes only that letters tell stories. 
Conventional spelling comes later. Children learn to read and write text by applying a reservoir 
of world experience to the thought, content, and meaning of spoken language that the text 
records. We similarly accept “firemans” without instant correction; the meaning is clear, cosmetic 
details will come later.  
In mathematics, too, thought, content and meaning must come first, conventions later. The 
difficulty in acquiring CMN is that, for young students, world experience and natural language 
don’t sufficiently supplement CMN’s concision to support that learning; the difficulty of using 
CMN makes it not ideal for building a basis of thought, content, and meaning for mathematics. 
When CMN does get taught, teachers must allow the same level of “algebraic babbling” (Cusi, 
Malara, Navarra, 2011) that is natural and necessary in developing spoken and written natural 
language.  
Here’s the problem. On the one hand, in order to express and explore mathematical ideas, even 
very young children need greater precision than natural language provides. Imaginably, that 
could be the role of CMN. But learning any subject—especially mathematics, which requires 
focused control of attention—via a language (e.g., CMN) in which one is not fluent raises the 
cognitive load. Children need another language. 

 
3 Well, to be precise, neither may be our visual processing of prose text! 
4 Did you catch it? 
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Programming as a language for mathematics 
This idea isn’t new but the educational contexts in some of the seminal works (e.g., Papert, 
1972, 1980) were informal ones, quite different from school settings, which are increasingly 
regulated in content. “Coding” is the new sexy study, with new initiatives, standards and 
Olympiad-like challenges in many countries5, but many of these still imply independent efforts in 
school (i.e., robotics or coding classes) or informal out-of-school settings. Our own thinking was 
particularly influenced by efforts in Bulgaria (Sendova & Sendov 1994; Sendova 2013) and 
ScratchMaths (Noss & Hoyles, 2018, Benton, et al., 2016, 2017) both of which aimed at 
functioning within the constraints of expectable school settings. The ScratchMaths project 
explicitly refers to programming’s role as a language for maths. Our understanding of children’s 
language development and use, particularly in mathematics, led us to focus on that role. 
Expanding on a linguistic strategy: Building a microworld using the idea of “ayfs.” One 
2nd grade microworld presents a number line with only 0 labeled, not leftmost, a small number of 
programming blocks—for moves of , ,  and  and for specifying a 
starting place  (default 0, changeable by child)—and some suggestions for pure 
explorations or puzzles (Figure 1). Later puzzles offer new blocks, , ,  and, 

 and a “zoomed out” number line to pose “mathematically new” puzzles (Figure 2). 

   

Figure 1: Puzzles with smaller numbers 

 

Figure 2: Puzzles that use what the child already knows linguistically but feel mathematically advanced 
and exciting 

Children can create new blocks, if they like—e.g., a +1 block—using their puzzle solutions. 
Programs’ outcomes are not “checked” as a tutorial app might do. Children see the effects they 
produce and can change them if they like. No puzzle aims to the left of 0 but children often arrive 
there by accident, and with delight. Most children recognized these and felt proud at finding 
them; all of them (all!) knew exactly what block to click to get back to “ordinary numbers.”6 
Children rarely asked anything more about negative numbers—this is, after all, second grade!—

 
5 See, for example, https://www.codingforall.org/, https://www.csforall.org/, and 
http://www.bebraschallenge.org/ 
6 On the distinction between “positive numbers” and just “ordinary numbers,” see 
https://blogs.ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-
know/ 

0
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but loved them and moved on. They don’t need details or follow-up now, but their pleasure with 
them and experience moving to them and back “out” form a strong basis for future learning. 
Experience before formality. 
Having very few tools and strong contextual support—familiar symbols on blocks and a familiar 
number line image—meant that introducing this environment to 7-year-olds who had no prior 
programming experience took only 10 minutes, with them doing most of the demonstrating, 
before they raced to their desks to work the puzzles independently. Learning by doing in context. 
With small changes and no number line, 2nd graders express and explore place-value ideas 
(Figure 3). 

 

Figure 3: Combining two steps (from  ±1, ±10, ±100) to make a +9 block. 

Because environments like these “have legs” mathematically, they 
can grow with children. For example using analogous blocks  
, , ,  and puzzles on a zoom-in number line 
serves 3rd grade. That these puzzles feel so familiar as to be “trivial” 
is the point; fractions are just numbers; 3/4 + 3/4 gives 6/4, not the canonically wrong 6/8.  
Algorithmic and functional thought and description. Mathematically comfortable adults might 
describe 7 × (5 + 3) structurally as function composition, “seven times the quantity five plus 
three,” passing the result of one operation (+) to another (×). They describe the object not 
actions. Students likely describe actions “first add 5 and 3, then multiply by 7.” The action steps 
respect the composition (add, then multiply), but express it differently. With more elaborate 
compositions like !""

($%&)#%&(
= 10, older students’ failure to see the composition ( !""

()*+,-./01)
= 10, 

so the “something” must be 50) leaves them relying mechanically on expansion.  
Because CMN admits to both descriptions, both ways of thinking, it doesn’t help learners better 
articulate their current thinking and doesn’t help them acquire the thinking they haven’t 
developed. 

Functional CMN brings its own mysteries. Students may see 𝑓(𝑥 + 1) = 𝑥2 + 2𝑥 + 1 and even 
𝑓(𝑥) = 𝑥2 as if f is being multiplied by something. Beginners are also unsure what the variable is 
when they explore 𝑓(𝑥) = 𝑚𝑥 + 𝑏 on graphing software (Goldenberg, 1991): after all, what 
students vary are m and b, not x. 
By contrast, the idea of function—giving a specific response to a specific input/question—
develops very early, but that intuitive idea doesn’t seem to be readily codified into a way of 
thinking and describing, perhaps for lack of transparent exemplifying experiences. Certainly, the 
notation doesn’t provide that easy experience.  
A computer language could. Suitably designed and used, it could help students recognize the 
two ways of thinking. Because it is a precise language, it might even help students add precision 
to their own language as they articulate their thinking.  

2
40 5
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      or  

 

Figure 4.  Algorithmic description (left) of the steps involved in computing  7 × (5 + 3) vs.  
functional description (right) of the nature of the computation, itself. 

In first and second grade grades, our observations seem to show that the experience of 
constructing the algorithmic description (figure 4, left) with blocks does help them articulate that 
process more clearly in words. We don’t yet have evidence to show how, or whether, the 
experience of assembling functional constructs (figure 4, right) affects students’ thinking or 
verbal descriptions; that’s part of our current research.   
Language in context and live notation. Programming is a “live” language, a notation that can 
be run to give direct, clear feedback on what it says, what effect it has on its “listener” (the 
computer). This is how children learn natural language and learn through discourse: we say 
things, others react, and we see what effect we’ve created. Language in context.  
By contrast, a string of symbols that sits on paper (correct or incorrect) gives no feedback 
without the reader (re)reading and (re)processing it (or relying on outside authority to validate it). 
Devoid of potentially helpful context, that takes hard work, more than most students are naturally 
inclined to do. 
And part of learning to reason logically involves focusing on the steps. Neither natural language 
nor CMN express process or algorithm well enough. A good programming language can provide 
that.  
Language for thinking. Programming is also ideally suited to foster not only the mental 
practices typically associated with CS and sometimes labeled, in aggregate, “computational 
thinking” (Wing, 2006; DESE, 2016; CSTA, 2019; ISTE, 2019; K12CS, 2019) but also the 
mathematical habits of mind (Cuoco, et al., 2012; Mark, et al., 2012; Goldenberg, et al., 2012) 
now codified in the U.S. as the Mathematical Practice Standards (NGA/CCSSO, 2010), including 
these: (1) Programming provides a language with which students can “construct viable 
arguments and critique the reasoning of others,”7 logically, providing a platform for constructing, 
experimenting with, testing, and thinking about ideas; (2) it eases the process of “beginning with 
concrete examples and abstracting regularity” or “look[ing] for and express[ing] regularity in 
repeated reasoning”); (3) used well, it can help students develop the disposition to “make sense 
of problems and persevere in solving them,” and “expecting mathematics to make sense, to feel 
coherent and not arbitrary, and to have understandable reasons behind facts and methods”; (4) 
it is a perfect medium for helping students learn to “attend to precision”, as computers do what 
we tell them to do and when that’s not what we expect, we can dissect our instructions to find 
the ambiguity or misstep; and (5), of course, “[using] appropriate tools strategically,” the tools 
being not just the computer and programming but also tools like a number line used strategically: 
not just to get answers, but to organize thought. Finally, perhaps best connected with the maker 
idea, programming can support mathematical creativity—to many people, an oxymoron—posing 
new puzzles and inventing new ideas.  

Conclusion 
The challenge is to design microworlds with tasks that are core to school at the target age, have 
mathematical integrity and high cognitive demand, but require little to get started and provide the 
experience that the harder puzzles depend on. Microworld maker spaces using a programming 
language that is faithful to mathematics and suitable for learners can do that. Understanding how 

 
7 All quotations here are from NGA/CCSSO, 2010, pp. 6–8 or Goldenberg, et al., 2015, pp. 6 and 14.  



header – do not use it, it will be added by us 

do NOT use any Footer – it will be added by us later 

children naturally use linguistic (and other “non-mathematical” cognitive strategies) can guide the 
work. 
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