

Footer – Please leave the footer blank

How programming can serve young children as a
language for expressing and exploring
mathematics in their classes
E. Paul Goldenberg, pgoldenberg@edc.org
Education Development Center (EDC), Waltham, MA, USA

Cynthia J. Carter, ccarter@rashi.org
The Rashi School, Dedham, MA, USA

Abstract
Ideas can come from any kind of experience, but language is a key part of learning. We
commonly rely on two languages for mathematics: the one we speak (and its written form)
serves our needs for expressing the context of our problems and the nature of our thinking; and
conventional mathematical notation (CMN) lets us record mathematical expressions, equations
and formulas. Each is essential. But each also has limitations, especially for young learners.
With support from the National Science Foundation, EDC is researching the use of programming
as a third language for children to use in expressing, exploring, and making mathematics. We
study children’s use/misuse of the first two languages (spoken natural language and CMN) to
inform the design of a set of mathematical “maker spaces,” microworlds in which students in
grades 2–6 use programming in their regular lessons as a language for learning mathematics.
Our microworlds’ goals are driven by math, not coding, but preserve conceptual coherence and
developmental appropriateness in the programming and computer-science/computational-
thinking (CS/CT). Topic-centered approaches in mathematics classrooms hide interconnections
within mathematics, removing opportunities for surprise and delight and rendering the subject as
non-creative. The microworlds we’ve built and those we’re proposing aim to satisfy schools’
topical orientation but without siloes, creatively using and foreshadowing other mathematical
learning. They are designed and tested to fit easily within regular mathematics classroom study.
In this paper we show how these microworlds are inspired and informed by the way children,
especially young children, use linguistic pattern in spoken language to build mathematical ideas.
We also show how our design aims to circumvent the challenges beginners face with CMN,
mathematics’ written language, which provides the precision and concision natural language
lacks and that mathematical exploration requires but which sometimes diminishes clarity for
young children rather than enhancing it. We give brief descriptions of two (of four) microworlds
that we designed and already used with over 200 second graders, and brief descriptions of how
we are extending these to support later-grade learning. These illustrate how programming can
be a valuable third language for mathematics, supporting creative exploration, key content, and
essential mathematical habits of mind. CS/CT develops in tandem, integrated into the
mathematical thinking. In another paper (Goldenberg & Carter, submitted), we describe wholly
new microworlds under co-development with 6th graders.
The work described above uses careful observation to understand children’s use of language in
mathematics and to guide the iterative redesign of our microworlds. That part of our work is an
exploratory study, using no formal methodology. We are also conducting a more formal study of
the effects of the microworlds on children’s learning—using cognitive interviews, video, and
control classrooms—but that study is still in process and not reported here.

Keywords
mathematics; elementary school; microworlds; programming; mathematical maker space

Header – Please leave the header blank

Footer – Please leave the footer blank

How programming can serve young children as a language
for expressing and exploring mathematics in their classes
At EDC, we are designing Math + C (thinkmath.edc.org), a set of mathematical “maker spaces”
in which students use programming in their regular lessons in order to express, explore, and
make the mathematics they are learning. These microworlds are driven by the math, not by
coding. During AY 2018-2019, with support from the National Science Foundation, we
developed and piloted four microworlds (and accompanying materials) with >200 7-year-olds in
their in-school mathematics classes (Goldenberg, 2019; Goldenberg et al., submitted). We are
continuing that research with >200 more 7-year-olds and are designing/testing similar materials
for grades 3-5, again four microworlds each. Microworlds are tested both below and above the
target grade, because early studies showed that this alternative experience changed the
learning trajectories.1 Learning by making is different from learning on paper.
New experimental microworlds for 6th graders are growing out of a collaboration of students,
teachers, and a curriculum designer at EDC.
Mathematical maker spaces for schools? Maker spaces2 are environments in which people
are free to create with the available materials and tools. These are not just rooms with stuff; stuff
alone doesn’t foster creativity. Maker spaces have domains: a “typical” maker space (is there
such a thing?) might help one explore ideas for robots or for wood or plastic puzzles but not so
much for poetry or mathematics. How might one design an elementary school mathematics
maker space?
The ability to use a maker space—to make in it—taps one’s prior experiences with tools and
materials. We don’t even think of using a scissor—let alone a less ubiquitous tool—if we don’t
know such things exist. Beyond that, we need some experience or help. Maker environments
also have a culture. And rules (at the minimum, for safety), as all cultures do. They can be non-
coercive, non-didactic precisely because of a culture in which any person present is seen as a
potential source of help, information or ideas.
Our mathematical maker spaces are intended to live in school classrooms, where the cultures
(due to constraints both “good” and “bad”) are quite different. Designing mathematical maker
spaces so that teachers can integrate making into classwork at grade level imposes even more
constraints.
Our microworlds start with few tools and are limited to particular mathematical constructions,
satisfying schools’ typically topical orientation but without siloes, connecting mathematical
learning, and preserving opportunities for surprise and creativity. We’ve honed the process for
getting 2nd graders familiar with the tools to take only 10 minutes gathered on the rug, mostly
doing the demonstrating themselves. Then they can do puzzles we pose or explore freely and
invent their own ideas and puzzles. Because the tools are programming blocks, students can
also create new tools.
Our programming microworlds are designed to support the mathematical content that teachers
and schools deem most critical. We want children to experience material that is new to them just
as mathematicians approach what’s new to them: experiencing surprise, becoming curious,
playing, tinkering and researching, puzzling through, and extending rather than just memorizing.

1 Even physical (motoric) milestones vary widely (including 4-month-olds standing erect independently
without holding on!) depending on experience. “In contrast to the consistent and orderly progression
implied by the [familiar] milestone chart,” the authors report, “the skills infants acquire, the ages they first
appear, and their subsequent developmental trajectories are highly responsive to cultural and historical
differences in childrearing practices and infants’ everyday experiences” (Rachwani, et al. in press). The
order of acquisition of intellectual skills is also not immutable; experience matters.
2 See, e.g., https://www.makerspaces.com/what-is-a-makerspace/

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Our microworlds use programming as a language for mathematics, inspired by the way children,
especially young ones, use linguistic pattern in spoken language to build mathematical ideas.
They also aim to circumvent the challenges beginners face with conventional mathematical
notation (CMN), mathematics’ written language, which provides the precision and concision
natural language lacks and that mathematical exploration requires. Microworlds we designed
and used with children illustrate how programming as a third language for mathematics supports
both creative exploration and essential content.

Spoken language and mathematics
It’s fascinating how children use their adept language-brains to build or make sense of early
mathematical ideas. Natural language conveys the semantic/contextual settings for
mathematical problems. It’s also the common way children share and refine their thinking. But,
beyond classroom discourse, there’s yet another way—one that gets unfortunately little attention
in curricula or pedagogy—that children, especially young children, use their language-brains to
process mathematical ideas: linguistic pattern.
We asked kindergarteners what they thought “five eighths plus five eighths” might be. One
confidently chirped “Ten ayfs!! [pause] What’s an ayf?” (Goldenberg, et al. 2017). That’s correct,
but linguistic, not “mathematical.” (More precisely, the boundary between mathematical and
linguistic thinking may be blurry at that age.)
We also asked kindergarteners to name the biggest numbers they could think of. Children
offered “a hundred” or “infinity” or “a million,” but not “two-hundred” or “three-million” (although
one said “infinity-googolplex”). When asked what two-hundred plus three-hundred might be,
most confidently answered five-hundred. We interpret that as a linguistic rather than
mathematical strategy because the same children responded to “a hundred plus a hundred” by
saying “a hundred,” “a million” or “I have no idea.” “Hundred” simply meant “big number.” To
some, a big number plus a big number is a big number. To others, big plus big is bigger. And to
the sweet child who turned up her hands, smiled, and said “I have no idea,” a big number plus a
big number could be anything. These children weren’t using the numberness of hundred; it was
as if we asked what’s three goats plus two goats. But “what’s a goat plus a goat?” sounds
unclear. Is it a trick? What’s being asked?
Here’s another way children use linguistic strategies. In a game with second graders, they call
out half of whatever number we state. We start with familiar facts—the idea is to teach, not
stump. If they can halve six or eight they have no trouble with sixty, eighty or eight-thousand;
and they feel proud to use such big numbers. For just a few minutes, so the activity doesn’t grow
old, we mix these no-brainer numbers with others the children know, like halving ten, twenty,
forty, four-hundred, twelve-million, repeating some for fun. Then we throw in eight-hundred-and-
six (still deliberately chosen to be clear) and many can halve that. We sometimes say, as if
revealing a great secret, that “some people don’t realize that half of forty-eight is really half of
forty and half of eight, but it is.” When we then ask a class what half of forty-eight is, roughly half
answer twenty-four; most others answer twenty-eight. That non-random, common error identifies
the problem: executive functioning, not math. The children are juggling five numbers—forty-
eight, forty, eight, twenty, and four—and that’s hard for 7-year-olds doing this for a first time.
Impressively, if we say only “Great! I heard twenty-four and twenty-eight. One of those is
correct!” without saying which is correct, children improve at halving 64, 86, 42, and six-million-
and-six. Why? And why does half of twenty-two remain a mystery for these same children?
Second-graders love repeating this exercise for a minute or so a couple of times a day for
several days. To “compute” half of forty-eight, all they need do is recite the numbers (half-of-
forty, half-of-eight) that they hear in their head. But half of twenty-two is not ten-one. Nothing
about “eleven” sounds like half of twenty-two; less than ten minutes into their first try at halving
wild numbers, their “mathematical” prowess remains mostly linguistic.
Halving twenty-two requires a calculation—a simple one, but not just a linguistic act. After a few
days with numbers that keep the steps feeling intuitive (but with no “instruction”), children are

Header – Please leave the header blank

Footer – Please leave the footer blank

ready for a new idea, not purely linguistic. They now understand twenty-two and can now halve
fifty-four as twenty-five plus two. Halving seventy-four requires another step, halving seventy, so
it waits for another day. Goldenberg, et al. (2015) report on high-schoolers for whom these child-
strategies had been drummed out. One girl for whom halving forty was insultingly easy
responded “how should I know?!” when asked to halve forty-eight; prior math experience taught
her that what isn’t memorized must be computed on paper. But the logic was easy to regain; she
rose quickly to the top of where we want high-schoolers to be, and where too many are not.
Why didn’t the second graders need to be told which answer was correct, as long as they knew
one was? Young children appear to have a built-in cognitive (intuitive) analogue to the
distributive property. Children aren’t, of course, factoring out goats (or hundreds or “ayfs”) to
know that two goats plus three goats are five goats. Likewise, when asked to double ,
they draw but aren’t thinking “distributive property.” Children don’t start out
knowing that half of forty-eight is half-forty and half-eight, but that logic feels so familiar that even
when they lose track and fumble the numbers, confirmation that one of 24 and 28 is correct lets
them intuit which one. Seven-year-olds need to build skill at holding five or so numbers mentally
and tracking manipulations of them (executive function) but they soon develop that ability and
get quite good at halving and doubling, starting with easy numbers.

Mathematics builds new knowledge from old. In elementary school arithmetic, we solve 26 × 4
not by memorizing that fact, but by having some starting places (perhaps the standard set of
facts, or perhaps 25 × 4) and applying mathematical logic (e.g., a standard school algorithm, or
an ad hoc procedure) to derive the new result. The more mental facts we easily recall, the less
work is needed for deriving new results, but acquiring and maintaining mental facts takes work.
So, we strike a balance, memorizing some easy starting places.
Memorized facts is one way. Linguistic strategies provide another. Laura, a 2nd grader learned to
think of “twenty-eight” as a first and last name, like her own, and easily understood what remains
if the last name (or first name) is removed. That’s not a mathematical process, but it’s also not a
linguistic trick. Numbers aren’t born with names; we name them to make such computations
easy. Understanding 28 − 8 that way, Laura readily computed 28 − 9, following the linguistic
step with a mathematical one. Similarly, after out-loud counting 10 from twenty-three to thirty-
three and iterating to get forty-three, fifty-three, sixty-three, a child hears the linguistic pattern
and anticipates seventy-three without counting. Adding nine can then use the linguistic pattern
and adjust with an arithmetic step.
These oral/aural linguistic patterns that children are so competent (and inclined) to find
powerfully support some concepts and ideas of mathematics that written techniques and
manipulative methods don’t make apparent or even obscure.

Written language of mathematics
Reading and writing CMN is not like reading and writing English.
First, reading any text is different from nearly every other kind of visual skill. The ability to
recognize familiar objects in unfamiliar positions isn’t born in, but infant brains quickly develop
such essential geometric transformations, letting babies recognize a bottle even when the nipple
doesn’t face them directly. This visual processing takes learning but becomes automatic. For
reading and writing, children must suppress that hard-won, now-automatic skill; otherwise p, d,
b, and q are all the same. Writing and interchangeably is normal, totally expectable at first.
This is a reading-writing-only exception, following different rules from any other seeing. Attention
to order also changes. We rarely care about order when listing three objects we see but
understanding print requires it: was and saw are different. Mathematical print changes the rules
again. While 315 and 513 are unequal, but 3 × 5 and 5 × 3 are equal. And worse, unlike prose

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

text, mathematical expressions are not read strictly left to right.3 Convention requires
reading/processing both 5 + 4 × 2 and 5 × (4 + 2) right to left, a strain to teach and to learn.
Worse yet, unlike prose text, mathematical notations are two-dimensional, requiring attention to
both vertical and horizontal position. Students often encounter that first with graphs and charts.
Later they see it even in CMN. The typically uneven size and level of children’s scrawls are just
esthetic concerns; meaning isn’t affected. But in mathematics, 315, 315 and 315 mean different
things. Young children don’t use those notations but do see early. By middle school all these
distinctions matter.
A final example. Spoken (or printed, but spelled out as we do here), “five-eighths plus five-
eighths” generally evokes the correct “ten-eighths” response. But written !"+

!
" often evokes the

canonical add-everything-in-sight wrong answer, even from bright eighth-graders. Similarly,
some mathematical properties (like distributivity) seem essentially built into early cognition. Yet
when that idea and its name are “introduced” in third grade (as commonly mandated in the U.S.),
it is typically taught through a written string like 8 × 7 = 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 +
16 = 56. Far from adding precision or a new idea, this obfuscates what children already know.
Processing such a string takes focus and effort, so it isn’t the optimal way to introduce ideas to
an eight-year-old. In fact, despite your own mathematical fluency and adult cognition, probably
even you zipped through it without reading closely enough to see if we typed it correctly. For a
beginner, the cognitive load of decoding the notation obscures the idea.
CMN, which we now take for granted, was a relatively recent invention; mathematical progress
absolutely depended on it. The features that make it so valuable to mathematics are its
concision and precision. But, for learners, this comes at a price. Concision removes redundancy.
In speech and prose text, some redundancy helps understanding. Context helps a beginning
reader recognize a word or infer its meaning. And in speech and prose text, minor imprecisions
often don’t affect comprehension at all, which is on reason it is so difficult to proof-read a
document and catch all the errors.4 In CMN, one missing or misplaced character changes the
meaning.
Primary teachers understand that invented spelling, technically “incorrect,” is evidence of the
emerging (correct!) sense that letters encode specific speech sounds, progress from the pre-
schooler’s letter-salads that show that the child recognizes only that letters tell stories.
Conventional spelling comes later. Children learn to read and write text by applying a reservoir
of world experience to the thought, content, and meaning of spoken language that the text
records. We similarly accept “firemans” without instant correction; the meaning is clear, cosmetic
details will come later.
In mathematics, too, thought, content and meaning must come first, conventions later. The
difficulty in acquiring CMN is that, for young students, world experience and natural language
don’t sufficiently supplement CMN’s concision to support that learning; the difficulty of using
CMN makes it not ideal for building a basis of thought, content, and meaning for mathematics.
When CMN does get taught, teachers must allow the same level of “algebraic babbling” (Cusi,
Malara, Navarra, 2011) that is natural and necessary in developing spoken and written natural
language.
Here’s the problem. On the one hand, in order to express and explore mathematical ideas, even
very young children need greater precision than natural language provides. Imaginably, that
could be the role of CMN. But learning any subject—especially mathematics, which requires
focused control of attention—via a language (e.g., CMN) in which one is not fluent raises the
cognitive load. Children need another language.

3 Well, to be precise, neither may be our visual processing of prose text!
4 Did you catch it?

Header – Please leave the header blank

Footer – Please leave the footer blank

Programming as a language for mathematics
This idea isn’t new but the educational contexts in some of the seminal works (e.g., Papert,
1972, 1980) were informal ones, quite different from school settings, which are increasingly
regulated in content. “Coding” is the new sexy study, with new initiatives, standards and
Olympiad-like challenges in many countries5, but many of these still imply independent efforts in
school (i.e., robotics or coding classes) or informal out-of-school settings. Our own thinking was
particularly influenced by efforts in Bulgaria (Sendova & Sendov 1994; Sendova 2013) and
ScratchMaths (Noss & Hoyles, 2018, Benton, et al., 2016, 2017) both of which aimed at
functioning within the constraints of expectable school settings. The ScratchMaths project
explicitly refers to programming’s role as a language for maths. Our understanding of children’s
language development and use, particularly in mathematics, led us to focus on that role.
Expanding on a linguistic strategy: Building a microworld using the idea of “ayfs.” One
2nd grade microworld presents a number line with only 0 labeled, not leftmost, a small number of
programming blocks—for moves of , , and and for specifying a
starting place (default 0, changeable by child)—and some suggestions for pure
explorations or puzzles (Figure 1). Later puzzles offer new blocks, , , and,

 and a “zoomed out” number line to pose “mathematically new” puzzles (Figure 2).

Figure 1: Puzzles with smaller numbers

Figure 2: Puzzles that use what the child already knows linguistically but feel mathematically advanced
and exciting

Children can create new blocks, if they like—e.g., a +1 block—using their puzzle solutions.
Programs’ outcomes are not “checked” as a tutorial app might do. Children see the effects they
produce and can change them if they like. No puzzle aims to the left of 0 but children often arrive
there by accident, and with delight. Most children recognized these and felt proud at finding
them; all of them (all!) knew exactly what block to click to get back to “ordinary numbers.”6
Children rarely asked anything more about negative numbers—this is, after all, second grade!—

5 See, for example, https://www.codingforall.org/, https://www.csforall.org/, and
http://www.bebraschallenge.org/
6 On the distinction between “positive numbers” and just “ordinary numbers,” see
https://blogs.ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-
know/

0

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

but loved them and moved on. They don’t need details or follow-up now, but their pleasure with
them and experience moving to them and back “out” form a strong basis for future learning.
Experience before formality.
Having very few tools and strong contextual support—familiar symbols on blocks and a familiar
number line image—meant that introducing this environment to 7-year-olds who had no prior
programming experience took only 10 minutes, with them doing most of the demonstrating,
before they raced to their desks to work the puzzles independently. Learning by doing in context.
With small changes and no number line, 2nd graders express and explore place-value ideas
(Figure 3).

Figure 3: Combining two steps (from ±1, ±10, ±100) to make a +9 block.

Because environments like these “have legs” mathematically, they
can grow with children. For example using analogous blocks
, , , and puzzles on a zoom-in number line
serves 3rd grade. That these puzzles feel so familiar as to be “trivial”
is the point; fractions are just numbers; 3/4 + 3/4 gives 6/4, not the canonically wrong 6/8.
Algorithmic and functional thought and description. Mathematically comfortable adults might
describe 7 × (5 + 3) structurally as function composition, “seven times the quantity five plus
three,” passing the result of one operation (+) to another (×). They describe the object not
actions. Students likely describe actions “first add 5 and 3, then multiply by 7.” The action steps
respect the composition (add, then multiply), but express it differently. With more elaborate
compositions like !""

($%&)#%&(
= 10, older students’ failure to see the composition (!""

()*+,-./01)
= 10,

so the “something” must be 50) leaves them relying mechanically on expansion.
Because CMN admits to both descriptions, both ways of thinking, it doesn’t help learners better
articulate their current thinking and doesn’t help them acquire the thinking they haven’t
developed.

Functional CMN brings its own mysteries. Students may see 𝑓(𝑥 + 1) = 𝑥2 + 2𝑥 + 1 and even
𝑓(𝑥) = 𝑥2 as if f is being multiplied by something. Beginners are also unsure what the variable is
when they explore 𝑓(𝑥) = 𝑚𝑥 + 𝑏 on graphing software (Goldenberg, 1991): after all, what
students vary are m and b, not x.
By contrast, the idea of function—giving a specific response to a specific input/question—
develops very early, but that intuitive idea doesn’t seem to be readily codified into a way of
thinking and describing, perhaps for lack of transparent exemplifying experiences. Certainly, the
notation doesn’t provide that easy experience.
A computer language could. Suitably designed and used, it could help students recognize the
two ways of thinking. Because it is a precise language, it might even help students add precision
to their own language as they articulate their thinking.

2
40 5

4

Header – Please leave the header blank

Footer – Please leave the footer blank

 or

Figure 4. Algorithmic description (left) of the steps involved in computing 7 × (5 + 3) vs.
functional description (right) of the nature of the computation, itself.

In first and second grade grades, our observations seem to show that the experience of
constructing the algorithmic description (figure 4, left) with blocks does help them articulate that
process more clearly in words. We don’t yet have evidence to show how, or whether, the
experience of assembling functional constructs (figure 4, right) affects students’ thinking or
verbal descriptions; that’s part of our current research.
Language in context and live notation. Programming is a “live” language, a notation that can
be run to give direct, clear feedback on what it says, what effect it has on its “listener” (the
computer). This is how children learn natural language and learn through discourse: we say
things, others react, and we see what effect we’ve created. Language in context.
By contrast, a string of symbols that sits on paper (correct or incorrect) gives no feedback
without the reader (re)reading and (re)processing it (or relying on outside authority to validate it).
Devoid of potentially helpful context, that takes hard work, more than most students are naturally
inclined to do.
And part of learning to reason logically involves focusing on the steps. Neither natural language
nor CMN express process or algorithm well enough. A good programming language can provide
that.
Language for thinking. Programming is also ideally suited to foster not only the mental
practices typically associated with CS and sometimes labeled, in aggregate, “computational
thinking” (Wing, 2006; DESE, 2016; CSTA, 2019; ISTE, 2019; K12CS, 2019) but also the
mathematical habits of mind (Cuoco, et al., 2012; Mark, et al., 2012; Goldenberg, et al., 2012)
now codified in the U.S. as the Mathematical Practice Standards (NGA/CCSSO, 2010), including
these: (1) Programming provides a language with which students can “construct viable
arguments and critique the reasoning of others,”7 logically, providing a platform for constructing,
experimenting with, testing, and thinking about ideas; (2) it eases the process of “beginning with
concrete examples and abstracting regularity” or “look[ing] for and express[ing] regularity in
repeated reasoning”); (3) used well, it can help students develop the disposition to “make sense
of problems and persevere in solving them,” and “expecting mathematics to make sense, to feel
coherent and not arbitrary, and to have understandable reasons behind facts and methods”; (4)
it is a perfect medium for helping students learn to “attend to precision”, as computers do what
we tell them to do and when that’s not what we expect, we can dissect our instructions to find
the ambiguity or misstep; and (5), of course, “[using] appropriate tools strategically,” the tools
being not just the computer and programming but also tools like a number line used strategically:
not just to get answers, but to organize thought. Finally, perhaps best connected with the maker
idea, programming can support mathematical creativity—to many people, an oxymoron—posing
new puzzles and inventing new ideas.

Conclusion
The challenge is to design microworlds with tasks that are core to school at the target age, have
mathematical integrity and high cognitive demand, but require little to get started and provide the
experience that the harder puzzles depend on. Microworld maker spaces using a programming
language that is faithful to mathematics and suitable for learners can do that. Understanding how

7 All quotations here are from NGA/CCSSO, 2010, pp. 6–8 or Goldenberg, et al., 2015, pp. 6 and 14.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

children naturally use linguistic (and other “non-mathematical” cognitive strategies) can guide the
work.

Acknowledgment
Funding for doing and reporting the work described in this paper was provided in part by the
National Science Foundation, grants 1441075, 1543136 and 1741792. Views expressed here
are those of the author and do not necessarily reflect the views of the Foundation.

References
Benton, L., Hoyles, C., Kalas, I., and Noss, R. (2016) Building mathematical knowledge with
programming: Insights from the ScratchMaths project. In Sipitakiat, A., and Tutiyaphuengprasert,
N. Constructionism in action 2016. Conference proceedings. Retrieved from
https://drive.google.com/file/d/0BwnqbVelN16LbXY3NHJZaldQY3c/view
Benton, L., Hoyles, C., Kalas, I., and Noss, R. (2017) Bridging primary programming and
mathematics: Some findings of design research in England. Digital Experiences in Mathematics
Education, 1–24. https://doi.org/10.1007/s40751-017-0028-x
CSTA. 2019. CS Standards. https://www.csteachers.org/
Cuoco, A., Goldenberg, E.P., and Mark, J. (2012) Organizing a curriculum around mathematical
habits of mind. In Hirsch, C., Reys, B. and Lappan, G., eds, Curriculum Issues in an Era of
Common Core State Standards for Mathematics, Reston: NCTM. (First appeared in
Mathematics Teacher 103(9) pp. 682-688, May 2010. Reston, VA: NCTM. 2010.)
Cusi, A., Malara, N., and Navarra, G. (2011) Theoretical Issues and Educational Strategies for
Encouraging Teachers to Promote a Linguistic and Metacognitive Approach to Early Algebra. In
Cai, J. and Knuth, E., eds. Early algebraization: A global dialogue. Pgs. 483–510.
DESE. (2016) Massachusetts Department of Elementary and Secondary Education. 2016
Massachusetts Digital Literacy and Computer Science (DLCS) Curriculum Framework.
Accessed at http://www.doe.mass.edu/frameworks/dlcs.pdf, 16 September 2016.
Goldenberg, E.P. (2019) Problem posing and creativity in elementary-school mathematics.
Constructivist Foundations 14(3), 601–613. http://constructivist.info/14/3/501.goldenberg
Goldenberg, E.P. (1991) The difference between graphing software and educational graphing
software. In Demana, F., and B. Waits, (eds.), Proceedings of the Second Annual Conference
on Technology in Collegiate Mathematics. Addison-Wesley, 1991; co-published in Zimmerman,
W., and S. Cunningham, (eds.) Visualization in Mathematics, Math. Assoc. of America.
Goldenberg, E.P. and Carter, C. (submitted, expected date 2020) Co-designing mathematical
microworlds with 6th graders: mathematical maker spaces for grades 2 through 6.
Goldenberg, E.P, Carter, C., Mark, J., Reed, K., and Spencer, D. (submitted, expected 2020)
Programming as language and manipulative for second grade mathematics.
Goldenberg, E.P., Mark, J., and Cuoco, A. (2012) An algebraic-habits-of-mind perspective on
elementary school. In Hirsch, C., Reys, B. and Lappan, G., eds, Curriculum Issues in an Era of
Common Core State Standards for Mathematics, Reston: NCTM. (First appeared in Teaching
Children Mathematics 16(9) pp. 548-556, May 2010. Reston, VA: NCTM. 2010.)
Goldenberg, E.P., Mark, J., Kang, J., Fries, M., Carter, C. and Cordner, T. (2015) Making Sense
of Algebra: Developing Students’ Mathematical Habits of Mind. Heinemann: Portsmouth, NH,
USA.
Goldenberg, E.P., Miller, S., Carter, C., and Reed, K. (2017) Mathematical Structure and Error in
Kindergarten. Young Children, 72(3):38-44. Washington, DC: NAEYC.
ISTE. (2019) Computational Thinking Competencies,
https://www.iste.org/standards/computational-thinking

Header – Please leave the header blank

Footer – Please leave the footer blank

K12CS (K12 Computer Science). (2019) K12 Computer Science Framework. https://k12cs.org/
Mark, J., Cuoco, A., Goldenberg, E.P., and Sword, S. (2012) Developing mathematical habits of
mind. In Hirsch, C., Reys, B. and Lappan, G., eds, Curriculum Issues in an Era of Common Core
State Standards for Mathematics, Reston: NCTM. (First appeared in Mathematics Teaching in
the Middle School 15(9) pp. 505-509, May 2010. Reston, VA: NCTM. 2010.)
NGA/CCSSO (2010) Common core state standards for mathematics. National Governors
Association Center for Best Practices, Council of Chief State School Officers. Washington, DC.
Noss, R. and Hoyles, C. (2018) The ScratchMaths project is directed by Richard Noss and Celia
Hoyles, with Ivan Kalaš, Laura Benton, Alison Clark Wilson, and Piers Saunders. See
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths. Accessed March 29, 2018.
Papert, S. (1972) Teaching Children to be Mathematicians Versus Teaching About Mathematics,
Int. J. Math Ed in Science and Tech., Vol. 3, No. 3, pp. 249–262.
Papert, S. A. (1980) Mindstorms: Children, computers, and powerful ideas. New York City, NY:
Basic Books.
Rachwani, J., Hoch, J. E., and Adolph, K. E. (in press). Action in development: Variability,
flexibility, and plasticity. In C. S. Tamis-LeMonda and J. J. Lockman (Eds.). Handbook of infant
development. Cambridge University Press. Preprint formatted by authors. Retrieved from
http://www.psych.nyu.edu/adolph/publications/RachwaniHochAdolph-inpress-ActionInDevelopment.pdf,
October 28, 2019.
Sendova, E. (2013) Assisting the art of discovery at school age: The Bulgarian experience. In
Talent Development Around the World (pp. 39–98). Mérida, Yucatán.
Sendova, E., and Sendov, B. (1994) Using computers in school to provide linguistic approaches
to mathematics: A Bulgarian example. Machine-Mediated Learning, 4(1), 27–65.
Wing, J. (2006) Computational thinking. Communications of the ACM, 49(3), 33–35.

