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Problem Posing and Creativity 
in Elementary-School Mathematics
E. Paul Goldenberg • Education Development Center (EDC), USA • pgoldenberg/at/edc.org

> Context • In 1972, Papert emphasized that “[t]he important difference between the work of a child in an elementary 
mathematics class and […]a mathematician” is “not in the subject matter […]but in the fact that the mathematician is 
creatively engaged […]” Along with creative, Papert kept saying children should be engaged in projects rather than prob-
lems. A project is not just a large problem, but involves sustained, active engagement, like children’s play. For Papert, 
in 1972, computer programming suggested a flexible construction medium, ideal for a research-lab/playground tuned 
to mathematics for children. In 1964, without computers, Sawyer also articulated research-playgrounds for children, 
rooted in conventional content, in which children would learn to act and think like mathematicians. > Problem • This 
target article addresses the issue of designing a formal curriculum that helps children develop the mathematical hab-
its of mind of creative tinkering, puzzling through, and perseverance. I connect the two mathematicians/educators 
– Papert and Sawyer – tackling three questions: How do genuine puzzles differ from school problems? What is useful 
about children creating puzzles? How might puzzles, problem-posing and programming-centric playgrounds enhance 
mathematical learning? > Method • This analysis is based on forty years of curriculum analysis, comparison and con-
struction, and on research with children. > Results • In physical playgrounds most children choose challenge. Papert’s 
ideas tapped that try-something-new and puzzle-it-out-for-yourself spirit, the drive for challenge. Children can learn 
a lot in such an environment, but what (and how much) they learn is left to chance. Formal educational systems set 
standards and structures to ensure some common learning and some equity across students. For a curriculum to tap 
curiosity and the drive for challenge, it needs both the playful looseness that invites exploration and the structure 
that organizes content. > Implications • My aim is to provide support for mathematics teachers and curriculum de-
signers to design or teach in accord with their constructivist thinking. > Constructivist content • This article enriches 
Papert’s constructionism with curricular ideas from Sawyer and from the work that I and my colleagues have done. 
> Key words • Problem posing, puzzles, mathematics, algebra, computer programming.

« 1 » Seymour Papert’s early work and 
the origin of constructionism were largely 
outside of the school setting. The current 
school environment is even more rigidly 
constrained than it used to be. The ques-
tion is, Is there any hope for this kind of con-
structionist thinking and teaching in a school 
setting, not as a pull-out for well-resourced 
schools and with the best of their students, but 
as part of the regular program? This target ar-
ticle shares some ideas that, to me, exhibit 
the essential elements of constructionism 
and could easily be core to even moderately 
conservative school practice.

« 2 » I, too, love playing with children 
outside the classroom. There is more free-
dom and it is easier. But we all know that 
if we are serious about touching many chil-
dren’s lives, we need a way to find them 
where they are. They are in school. Reaching 
them there is possible.

Children choose challenge

« 3 » Not all children and not all the 
time, but children do mostly choose chal-
lenge. Children are often pretty adventur-
ous on the playground. Tiny ones climb 
the monkey bars higher than their parents 
are totally happy with. When climbing gets 
too easy, they hang upside down. Children 
walk on five-inch-wide retaining walls two 
to three feet above sidewalk level when they 
get a chance; they hop across the street on 
one foot; when bicycle riding feels easy, they 
try letting go of the handlebars. Even with 
games, they up the ante if the game feels 
too easy, changing rules fluidly to add extra 
challenge.

« 4 » For a toddler, there’s enough chal-
lenge fitting the boat-shaped piece into the 
boat-shaped hole and the moon-shaped 
piece into the moon-shaped hole, but when 

that’s no longer a challenge, children seek 
more. Kindergarteners like fitting together 
the two-dozen jigsaw puzzle pieces of a 
large picture of a dinosaur. And when that 
gets too easy, some try putting the pieces 
together face down, some try jigsaw puzzles 
with smaller and more numerous pieces, 
and some just move on to totally different 
activities.

« 5 » Children also put effort into fig-
uring out how things work. Laura Schulz 
and Elizabeth Bonawitz (2007) showed pre-
schoolers a box with two levers and two dif-
ferent toys that popped up when the levers 
were pressed. One group of children were 
shown that each lever caused one toy to pop 
up. The other group saw only that when both 
levers were pressed simultaneously, both 
toys popped up. The first group’s informa-
tion was complete and unambiguous, with 
nothing left to figure out. The second group’s 
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information was incomplete: either lever 
might have controlled both toys, with the 
other doing the same, or nothing, or raising 
just one toy if pressed by itself; or the two 
levers might be totally independent, one for 
each toy. When the children were then given 
the toy to play with (or ignore) on their own, 
children in that second group played longer, 
spontaneously exploring to puzzle out the 
cause-and-effect relationship. It is tempting 
to relate the first group’s experience to the 
situation children often experience in school 
mathematics, where common pedagogy (at 
least in the US and UK) shows exactly how 
each thing is done, leaving no evidence that 
there is anything to figure out, and taking lit-
tle advantage of children’s built-in curiosity.

« 6 » Children also love riddles – chal-
lenges to logic, interpretation or perception. 
And just as they spontaneously add chal-
lenge to their playground activities or jigsaw 
puzzles, they will add to their repertoire of 
riddles and jokes by making up their own, 
sometimes creations that they, at their age, 
find funny (illogical) because the challenge 
“works” for them, and that we adults find 
simply ludicrous (illogical) because the 
challenge no longer works.

« 7 » The common feature is the chal-
lenge. When it is not there, children are 
bored. When they are bored, they invent 
challenge. In school, that mischievous in-
ventiveness can be to the dismay of their 
teachers, whose response may dismay the 
children, but even that will not stop the chil-
dren’s drive for the challenge.

Why puzzles?

« 8 » Kittens stalk and pounce to make 
their hunting skills sharp, and they scratch 
to keep their claws sharp. That is because 
sharp claws and hunting skills are among 
the particular adaptations that make their 
species successful. Our species’ special ad-
aptation is not sharp claws and pouncing 
but a mind that lets us adapt to nearly any 
environment, which is how we wound up 
populating city and farm, blazing heat and 
frigid cold, arid desert and tropical jungle. 
Keeping our minds sharp is what makes our 
species successful. Evolution built a mecha-
nism to nudge creatures to repeat those ac-
tions that, for their species, are most use-

ful. Humans experience it as pleasure. We 
like the feeling we get when we stretch our 
minds, so we seek it out.

« 9 » Having evolved to adapt to such 
varied environments means we start with less 
“built-in knowledge” about which features 
will matter most for survival. We must fig-
ure that out. That has implications for learn-
ing. As children, we watch social behavior 
(Whom should we copy, stay near, avoid?), 
animals (Are they food, playmates or dan-
ger?), artifacts (How do they work?), math 
lessons (Who knows? Maybe they are im-
portant) and everything else. Little children 
listen closely to the words others use, and re-
peat them, whether or not they relate to the 
current activity. In our species, it is adaptive 
for the young to be distractible and not to fo-
cus too narrowly; some “attention deficit” is 
natural, and a built-in asset for a child.

« 10 » For adults who must focus to 
“earn a living,” whether that is by blow-dart-
ing the rabbit (while avoiding the tiger) or by 
generating research papers or teaching chil-
dren, allowing their attention to wander is 
not as adaptive. But adults still have to keep 
their minds sharp. Adults argue about ideas 
– politics, religion, what to wear, business 
plans, the lives of others, predicting which 
team will win or what their best strategy is 
– even when the practical value of the argu-
ment is near zero. It is a mental workout.1 
Mental challenge is not just for academics; 
all people whose minds are not already fully 
occupied finding food or avoiding danger 
seek ways to keep their mind busy. Mental 
challenges for adults are sold not just in aca-
demic bookstores but also in supermarkets; 
puzzles appear in newspapers and in air-
plane magazines. Boredom is painful; en-
forced boredom is torture.

« 11 » Several things distinguish purely 
recreational “puzzles” from standard school 
problems. The most obvious is that they are 
optional. But tasks designed for educational 
purposes – non-optional and non-recre-
ational – can also be designed in ways that 
tap the same drive that moves people to take 

1 | Children also practice intellectual argu-
ment, debating rules of games, veracity of claims, 
or meanings of words and ideas. Those arguments 
share many characteristics with play even when, 
to our adult eyes, they seem to be getting in the 
way of the play.

on optional puzzles, a drive Marcel Danesi 
(2002) refers to as “the puzzle instinct.” Tasks 
that generate surprise can stimulate curios-
ity and the eagerness to satisfy that curiosity 
by exploring more. Puzzles require puzzling: 
searching, figuring out what to do, and a bit 
of time. A crossword puzzle provides some 
hundred clues. Even if the individual clues 
are not obscure and “tricky,” it is not imme-
diately obvious which clue to use first. One 
searches for a place to start, tries an experi-
ment, confirms or rejects the word, and then 
moves on. The content is not mathematical, 
but the way of thinking – that search for an 
entry point and for data that supports or 
weakens a conjecture – is very close to one 
element of mathematical practice we want 
students to develop. (And, of course, tasks 
that do have mathematical content can also 
offer that experience of genuine puzzling and 
surprise.) Solving a puzzle is different from 
working an exercise: the process is not rote 
or algorithmic, not just the application of 
some technique one just learned.

Puzzles and surprise 
in mathematics learning
« 12 » In 1964, Walter Sawyer (2003) 

seeded the ideas for a wonderful textbook 
series for primary-school mathematics 
(Wirtz et al. 1964) and for our own cur-
riculum materials (see, e.g., Goldenberg & 
Shteingold 2007a, 2007b). He took a very 
algebraic approach to teaching elementary 
arithmetic, with a major emphasis on play 
and surprise. On the surface, the content 
was exactly what one expects for the grade 
level but with a twist that included research, 
puzzles for children to figure out, all fore-
shadowing the algebra that children would 
learn later.

« 13 » For example, as a way to give 
seven-year-olds practice with addition and 
subtraction they start with a piece of math-
ematical research. A child is asked to sug-
gest some addition equation like 4 + 2 = 6 
or any other, and the teacher would write 
it on the board. Another child is asked to 
suggest a new equation, e.g., 1 + 2 = 3, which 
the teacher carefully lines up directly under-
neath the first. Then the teacher has the chil-
dren add vertically, displaying the results as 
in Figure 1 (left).
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« 14 » Do these three new numbers 
make a mathematically correct addition 
equation? The teacher completes the bottom 
row of numbers to read 5 + 4 =?  9. Surprise!

« 15 » Will this always happen, or did 
they just get lucky? Children are given the 
challenge of finding a pair of addition sen-
tences that do not work (Figure  1, right). 
Seven-year-olds are sure they can find some 
and set off busily, getting lots of practice.

« 16 » Of course, they will find some 
(they think) and report them excitedly, but 
the preponderance of cases that do work will 
get even seven-year-olds to doubt the coun-
terexamples and check to see if they have 
made a mistake. This research is hardly a 
project in Papert’s sense – sustained, active 
engagement, like children’s play, in a pro-
grammable research-lab/playground. This 
tiny research project may not even last a full 
classroom period, but it does generate curi-
osity, the creative engagement that Papert re-
ferred to as the experience of the mathema-
tician. Note also that it is not just a school 
exercise “gamified” but a mathematical result 
that is surprising and generates curiosity.

« 17 » Their research convinces them of 
a result, but if we do not leave it as magic 
and instead help expose the logic inside 
the puzzle, children get even more excited. 
They have a tool they can and do use, first 
to figure out for themselves why the puzzle 
works and then to invent new puzzles for 
themselves and their friends! Exposing the 
logic involves reminding children of reason-
ing they developed in Kindergarten and first 
grade. Given a collection of buttons differ-
ing by two attributes, color and size, kinder-
garten children naturally sort, though some-
times their sorting is idiosyncratic – two 
large buttons and a small one, for example, 
to make a “family.” They learn to respond to 
“show me a small button” and “how many 
small buttons do you have?” And they can 
learn to respond to “show me a large grey 

button” and “how many small blue buttons 
do you have?” After sorting by a single at-
tribute (Figure 2, left), they can learn to sort 
by two attributes (Figure 2, right).

« 18 » Now, when we ask how many 
small buttons and how many large, we are 
summarizing the rows, and we can write 
that summary (Figure 3, left). And we can do 
the same for the columns, summarizing the 
number of buttons by color (Figure 3, right).

« 19 » Once children grasp and can use 
cardinality, it is clear that the number of blue 
and grey must be the same as the number of 
large and small – either way, it is all the but-
tons. Second-graade students comfortably 
replace buttons with numbers (Figure  4) 
and then use that structure as part of their 
reasoning.

« 20 » Reading across (Figure 4, right), 
children see 4 + 2 = 6 and 3 + 1 = 4; adding 
down the columns, they get 7, 3, and 10, 
which must make a correct addition state-
ment.

« 21 » Subtracting down the columns 
is not always possible for seven-year-olds – 
depending on the situation, it might require 
negative numbers, and the meaning changes, 
too (it does not yet make sense to subtract 
the number of large buttons from the num-
ber of small ones) – but with numbers that 
they can subtract (as is the case in Figure 4, 
right), the arithmetic still works and produc-
es a mathematically correct addition state-

ment. Subtracting to see how many more 
small buttons than large, we get 1 + 1 = 2. And 
that exact same logic will be essential in alge-
bra a few years later! (Figure 5)

« 22 » The format is not just a school ar-
tifact; it is the structure of any spreadsheet 
that subtotals the columns and rows and has 
a grand total. Robert Wirtz et al. (1964) used 
this format as a puzzle. (Which cell in Fig-
ure 6 might you fill in first?)

« 23 » They also used it as a route into 
multi-digit addition and subtraction (Fig-
ure 7).
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Figure 1 • Left: “Adding” two equations. 
Right: A blank for children to experi-

ment with.
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Figure 2 • Sorting buttons in kindergarten.
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Figure 3 • Recording data from the sorting.
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Figure 4 • Buttons (left) replaced by the 
number of buttons (right).
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Figure 5 • Algebra subtracting equations.
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Figure 6 • A puzzle based on a spreadsheet 
with subtotals and grand total.
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Figure 7 • The same arithmetic presented 
(left) as an addition puzzle 45 + 37, with the 
grey square as the sum, and (right) as a sub-
traction puzzle 82 – 37, with the grey square 
as the difference.
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« 24 » For nine- or ten-year-olds, this 
structure also models the multiplication 
algorithm. Instead of color and size labels, 
we label the width and height of the col-
umns and rows, and imagine cells filled with 
unit squares instead of buttons. How many 
squares are in the four regions? In the most 
concrete image, everything is to scale (Fig-
ure 8, left).

« 25 » With a smaller array, say 3 × 4, we 
can see why multiplication gives the answer 
and we can count to check. But with num-
bers like 37 × 26, we certainly do not want to 
count! Instead, we use an abstraction (Fig-
ure  8, right), ignoring scale, but maintain-
ing a sense of the logic of multi-digit multi-
plication, not a set of memorized steps that 
often wind up feeling arbitrary. Of course, 
the steps involved in this logical model map 
perfectly onto the abbreviated notation of-
ten taught in school, and fully explain that 
notation. Moreover, it is worth delaying the 
abbreviated notation until children are so 
secure in the logic of the array model that 
they can easily extend it to three-digit mul-
tiplication, because exactly this method – 
four separate multiplications and only then 
a possible summing up – will be required 
when the students study algebra.

« 26 » Sawyer suggested other ways that 
even very young elementary content like 
addition and subtraction of small numbers 
could be learned or practiced in a puzzle-
like context that both builds curiosity and 
foreshadows later ideas and methods. Fig-
ure 9, for example, shows what, in standard 
worksheets, might be presented as 16 unre-
lated addition/subtraction practice exercises 
for seven-year-olds, but structured here in a 
way that adds a bit of intellectual challenge 
– how-do-I-do-this? – and foreshadows sys-
tems of equations that the children will meet 
several years later.

« 27 » Again, it is not a “project” in Pa-
pert’s sense, and not “creative” in the most 
familiarly used sense of that word, but espe-
cially the last two columns pull for children 
to be mathematically creative.

« 28 » One of the most powerful intro-
ductions to algebra that I have seen is what 
Wirtz et al. (1964) called Think-of-a-Num-
ber tricks. For example: “Think of a number. 
(Yes, you! Please think of a number.) Add 3. 
Double the result. Subtract 4. Cut that result 
in half. Subtract your original number. Aha! 
I can read your mind! You got 1 at the end!”

« 29 » For nine- or ten-year-olds, this 
is wonderful magic. They want to do it 
over and over, but also want to know how it 
works. I say that I picture the secret number 
as that many marbles (or grapes or whatev-
er), tucked in a bag  or bucket  where 
we cannot see them – only the secret keeper 
knows the number inside. When I give the 
instruction “add 3,” I know about those 
marbles, so I draw them outside the bag. I 
ask the children what the next instruction 
is (they almost always remember) and what 
the picture should be like (they almost al-
ways say “two bags and six marbles”). Then 
I continue, each time asking the children to 
describe the next picture. At the end, “sub-
tract your original number” gets rid of the 
bag. So, the number of marbles in it does not 
matter! There is one marble left, and we can 
see it!

« 30 » Even after the usual huge smile 
and the cry “I get it!!,” seeing it once is not 
enough. The understanding evaporates until 
children see the generality, not just the way 
this particular trick worked. To create that 
abstraction for themselves, children need 
research time: practice drawing pictures to 
match instructions, applying instructions to 
specific numbers, and variations on the trick 
from which to generalize and learn to invent 
their own tricks.

« 31 » They also need chances to study 
the trick inside out and backwards (Fig-
ure  10), starting, for example, with the 16 
that Suri had in mind after the instruction 
“double that” and figuring out what secret 
number she must have started with. To do 
that, a child might note that the picture cor-
responding to Suri’s 16 shows six of those 
marbles, so ten marbles must be hidden 
in the two bags. Suri’s secret number – the 
marbles in one bag – must have been 5.

« 32 » I have recently been introducing 
a new crop of eight- and nine-year-olds to 
algebra this way and told them that they 
would soon know how to invent new tricks 
of their own. After two days of playing with 
the puzzle, Lucy said “I really get it, but I 
still don’t know how to make up my own.” 
So, we played. I said “OK, I’ve thought of a 
number” and I drew . “Just make up one 
instruction, anything you like, and I’ll draw 
the next picture.” She said “add 5?” I said 
“OK,” drew , and asked “What 
next?” She said “double that?,” still with the 
question in her voice. I said “whatever you’d 
like me to do… Is that what you want me to 
do?” She nodded and I said “you draw the 
picture.” She drew two buckets and 10 dots. 
She then told me to subtract 2 (no ques-
tion in her voice, and she drew the picture), 
then subtract 7 (she drew the picture). That 
change in tone – no question in her voice 
– was because she now understood some-
thing new, not just about the mathematics 
of this trick but about mathematics, itself. 
She could make up a rule, any rule, and it 
was then up to her to figure out its implica-
tions. That is so much like watching a child 
program, see the effect, decide whether that 
effect is desired or not, and then decide what 
to do next.

« 33 » I asked, “OK, what can you do in 
order to know my number?” Long pause. 
Then Lucy commanded “subtract your orig-
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Figure 8 • An array model of multiplication. 
Left: proportional to scale. Right: abstracted.
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Figure 9 • A practice exercise for 2nd grade, foreshadowing systems 
of equations (after Wirtz et al. 1964).

http://constructivist.info
http://constructivist.info


323

Problem Posing and Creativity  Paul Goldenberg

Constructionism

               http://constructivist.info/14/3/319.goldenberg

inal number” (and drew the picture). After 
another pause, she said “Oh!! Subtract your 
original number again!” Her smug smile 
showed clearly that she knew what she had 
done but I wanted to check, so I prompted 
her to “read my mind.” Instantly, but with 
excitement and what also sounded like sur-
prise in her voice, she said “Oh! One! You 
got one!” as if understanding the trick for 
the first time all over again. The joy of “get-
ting it” is far more magical than any grade, 
praise or prize could be.

« 34 » These are 5- to 15-minute events. 
By the end of a week of them, instead of 
drawing the pictures that the children de-
scribe, we write the words with which they 
describe the pictures. “Two bags and six 
marbles” is a lot to write, so we abbreviate 
it: 2b + 6. No discussion of variables; no ex-
plaining about letters standing for numbers; 
2b + 6 is terse, but represents the language 
the children themselves used, and they fully 
understand it. For now, that’s enough. Lat-
er, when they formalize algebra, the bag or 
bucket image is useful to return to: a vari-
able is a container for a value.

« 35 » Containing a value (or being a 
pointer to it) is the programmer’s image; rep-
resenting a value is the mathematician’s im-
age. The underlying idea common to both 
images is that a value can be referred to by 
a name and that this abstraction is useful. In 
practice, nearly all children love the think-
of-a-number tricks, so they become a natu-
ral, appealing and compelling way to acquire 
that value-naming idea. Part of the power of 
the “trick” is that it is faithful to the math-
ematics, even though it is limited.2 But part 
of its power, I am sure, is what Schulz and 
Bonawitz (2007) saw: children play longer 
and more curiously when there’s something 
they do not understand and they believe that 
they can figure it out.3

2 | This imagery does not represent “divide 
by 2” well unless the numbers of bags and marbles 
are both even. The imagery is adaptable to “nega-
tive marbles,” but frankly awkward. So, we need 
to be clear that the imagery is not the goal, not a 
“new method” for algebra. But it is an extremely 
effective entry to algebra.

3 | This qualification is important. Nobody 
– no corporation, no person – puts time/money/
effort into an endeavor that they believe has no 
chance of success. Students who have been con-

« 36 » This was not a classroom assign-
ment. The children did not have to do this 
and would not be tested on it. But they put 
effort and attention into the think-of-a-
number trick because they want to know 
how it works. The intensity of Lucy’s inter-
est, even readily admitting what she could 
not yet do and asking for help doing it, was 
because there was a genuine mystery left to 
solve – one that she saw as hard – but she 
was so tantalizingly close that she was con-
vinced she could reach that goal.

Why have students invent 
puzzles?
« 37 » Four reasons come immediately 

to mind; perhaps there are more.
« 38 » First, the construction of a work-

able puzzle is a creative act, making the 
student a creator and not just a consumer 
of mathematics. We who call ourselves con-
structionists easily accept making as a good 

vinced they are “no good at math” often do not 
put effort into study that we believe would make 
them better. But they do not share that belief, so 
from their perspective, it is wiser to aim their ef-
forts in a direction that seems more likely to pay 
off. That is an adaptive, economical choice. That 
is why it is so important to show (not tell) them 
that they are capable by hooking their interest on 
something they perceive as hard but attainable.

thing, but it is useful to say why. What you 
make is yours; creating gives ownership. 
Mathematics is often perceived – except by 
mathematicians – as the antithesis of cre-
ativity, a subject in which rules rule and we 
obey. It is very possible to learn mathemati-
cal content that way, and some people like 
that order and simplicity. But mathematical 
thinking cannot work that way because gen-
uinely new problems could then never be 
solved. For new problems, one must create 
new ideas and approaches. Young students’ 
mathematical creativity cannot be at the 
leading edge of mathematics, but it can be at 
their leading edge. Puzzles are not the only 
opportunities for students to be creative in 
mathematics but they are good ones, espe-
cially for younger students.

« 39 » Second, constructing a good 
sharable puzzle is a balancing act – easy 
enough to be solvable and hard enough to 
be fun. To be solvable, a puzzle must also 
be well specified – enough clues to derive a 
unique solution (or a limited class of solu-
tions) – without having so many clues that 
only the arithmetic is left. Determining 
when one has given enough clues to derive a 
solution is quite a challenge.4

4 | This is especially the case when creating 
a good MysteryGrid puzzle or Who Am I puzzle, 
not described here, but part of the SolveMe suite 
of puzzles mentioned in §42.

Some cells are already filled.  Fill in the rest. 

Think of a number. 40
Add 3.

Double that.

Subtract 4.

Divide by 2.

Subtract your original number.

I can read your mind!   You got ____!!!

The instructions you give. Pictures Orli AdamSuriNaomi

16
10

Imagine your 

number is 

hidden in 

the bag.  

Figure 10 • Using bags and marbles to introduce 3rd graders to algebraic notation and solving 
equations. (Idea from Wirtz et al. 1964, reworked for 3rd grade based on Mark et al. 2014 and 
Goldenberg et al. 2015).
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« 40 » That challenge, and also the act 
of being a creator, may be part of why con-
struction of a sharable puzzle appeals to 
children, but the appeal is yet a third reason 
to have children create.

« 41 » And fourth, construction of 
a sharable object helps reveal the child’s 
thinking to both the child and teacher, sup-
porting refinement of that thinking, and 
discussion and analysis.

« 42 » SolveMe.edc.org is a puzzle world 
with three kinds of puzzles aimed at devel-
oping algebraic reasoning. Each puzzle type 
also lets students create their own puzzles 
and share them on line. The Mobiles app 
collection begins with relatively elementary 
puzzles like the ones in Figure 11, and even 
simpler ones for complete beginners.

« 43 » The mobile’s total weight might 
be given (Figure 11, left) and players must 
figure out how much the blue red objects 
must weigh in order for this mobile to bal-
ance. Or (Figure 11, right), no total weight 

might be given, but the weight of one of the 
hanging objects might be specified. Again, 
the player must puzzle out the weights of 
the other objects.

« 44 » Players often just work these out 
in their heads, but the app offers other op-
tions: they can scrawl annotations on the 
screen (Figure 12).

« 45 » They can also create equations 
by dragging off a copy of a horizontal beam 

 = , or the entire mobile 12 = 2  + 2 , and 
substitute these into other equations (or 
the mobile) to derive new information, like 
12 = 4 . The app also lets them factor 2 out 
of equations like 12 = 2  + 2  to derive 
new equations 6 =  +  and to drag a com-
mon element out of both sides of an equa-
tion like 4  = 2  +  to get 3  = 2 . Mara 
Otten et al. (2017) describe how eleven-
year-olds used explicitly algebraic correct 
reasoning in the context of informal nota-
tion and manipulations of a physical hang-
ing mobile.

« 46 » The mobile puzzles are essential-
ly systems of equations. Some students are 
intrigued that they can get those equations 
and see what those equations mean. In class, 
that is an advantage, but informally, even 
the students who like that they can get equa-
tions mostly do not work with the equations, 
instead inventing informal methods equiva-
lent to the formal manipulations that alge-
bra classes teach and name. They also see, 
early on, that the “weights” can be fractional 
and even negative.

« 47 » Some of the puzzles are quite 
challenging, like the ones in Figure 13; with-
out being required to, students persevere 
because they are sure they can solve the 
puzzles if they keep at it.

« 48 » As I had said, we felt it impor-
tant to provide a tool with which students 
could create their own puzzles and even 
share them with friends or with the entire 
SolveMe community. The sheer variety of 
users’ contributions is fascinating. Some are 

      

Figure 11 • Two relatively simple mobile puzzles. Figure 12 • Annotating a mobile puzzle.

      

Figure 13 • Two mobile puzzles at a more advanced level.
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genuine puzzles, like those shown above. 
Others seem to be intended more as works 
of art, like the ones in Figure 14.

« 49 » Tracy Manousaridis (personal 
communication 2018) regularly encour-
ages students in grades 2 and 3 to create 
their own puzzles as posters after solving 
some online. Part of her goal is, of course, 
the ownership that comes from building a 
puzzle. But it is also clear that the task natu-
rally leads children to work at the frontier of 
their ability, partly because they take special 
pride in pushing (and displaying) what they 
can do.

« 50 » The nine-year-old who created 
the puzzles shown in Figure 15 was clearly 
proud of the arithmetic she did but espe-
cially proud of having created a puzzle that 
required such fancy arithmetic. The puzzle, 
not just the artwork on the poster, is a high-
ly personal and creative act. This child is 
what Papert (1972) described as “the math-
ematician […] creatively engaged.”

Programming as a 
language for learning 
mathematics
« 51 » The examples and contexts de-

scribed above have been very far from the 
programming-centric proposal that Pap-
ert made in 1972. But they are well in line 
with the mathematical creativity, explora-
tion, and research projects that he regarded 
as doing mathematics rather than learning 
about it – solving genuine puzzles and cre-
ating one’s own versus learning mathemati-
cal facts and solving exercises created by 
others. While nobody would claim that pro-
gramming is the only (or even always best) 
venue for creative expression and explora-
tion in mathematics, I and others believe it 
can be an enormous help if it can become a 
language for and a natural part of learning 
mathematics. For it to be “a natural part,” it 
must develop along with the mathematics, 
growing over time as the mathematics does, 
and used in ways that support the mathe-
matics and do not compete with it. That is, 
it must not be, nor even seem to be, a sepa-
rate venture – fun stuff but disconnected. 
It must not be overhead or distraction. If 
that can be achieved, then the flexibility and 
expressive ability of programming can give 

it a central role in children’s mathematical 
learning and creativity.5

« 52 » Richard Noss and Celia Hoyles 
focused especially on that expressive ability:

“ Maths is difficult in part because of the language 
in which it is expressed. Can we find a different 
language – and set of ideas and approaches – that 
is more open, more accessible and more learnable. 
And can we find it without sacrificing what makes 

5 | It is important to emphasize that pro-
gramming, here, is not promoted as part of the 
current enthusiasm about “coding for all,” which 
is often associated with claims about viability for 
the work force. The ability to talk to machines 
the way programmers (currently) do may turn 
out to have some job value but smacks of a du-
bious promise. It feels similar to the claim that 
one cannot survive without mathematics in the 
21st century, a mantra that everyone is happy to 
repeat even while knowing so many people who 
unashamedly say they are “not good at math” and 
yet are surviving quite well.

mathematics work? Our tentative answer is ‘yes’ – 
the language of programming might, if we design 
it right, be just such a language.”6

« 53 » Mathematics needs three lan-
guages. Two are already used universally 
in school: natural language for semantics 
(context, explanation, and some of the log-
ic) and conventional arithmetic (algebraic) 
notation. Both are necessary but, if used in-
appropriately, both can also get in the way. 
For young children, mathematical notation 
is best used as a clean and concise way to 
record ideas that the children already un-
derstand well, not as the entry point to new 
ideas, as appears to be nearly universal prac-
tice.7 Here is why. Recall that the third grad-

6 | http://www.ucl.ac.uk/ioe/research/proj-
ects/scratchmaths

7 | This parallels teachers’ understanding 
that writing is a record of language, and that un-
derstanding the meaning of the language comes 
first.

Figure 14 • Two mobile “puzzles” invented by users, apparently intended only as art.

Figure 15 • Photographs of a mobile puzzle invented by a nine-year-old to challenge 
her classmates to use fractions.
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ers knew intuitively that doubling  
produced . Moreover, 
six-year-olds, when asked verbally (not in 
writing) what five eighths plus five eighths 
might be, are happy to respond “ten ayfs”8 
and then, perhaps, even ask “what’s an 
ayf?” (Goldenberg & Carter 2018). They 
never answer ten sixteenths. The distribu-
tive property is built in to our logic early. 
But when the term “distributive property” is 
introduced in third grade (in the US, that is 
a commonly mandated content standard), it 
is often taught with a written string like 8 × 7 
= 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56 
that is opaque and daunting to a beginner. It 
is likely that, despite your own mathemati-
cal literacy, knowledge, and adult cognition, 
even you zipped past the string of symbols 
without reading closely enough to see if it 
was typed correctly. Processing such a string 
of symbols takes focus and effort, so it can-
not be the optimal way to introduce the dis-
tributive property to an eight-year-old. Too 
much cognitive space is taken up just de-
coding the long string; not enough is left for 
thinking about the idea.

« 54 » But part of learning to reason 
mathematically involves focusing on the 
steps one takes to solve a problem. Neither 
natural language nor mathematical notation 
is particularly good at expressing process 
or algorithm. That is what a good program-
ming language can provide. Also, unlike a 
string of symbols or words that sits on pa-
per, correct or incorrect, and gives no feed-
back without the reader (re)reading and (re)
processing it mentally (or relying on outside 
authority to validate it) a programming lan-
guage is a notation that can be run and will 
give direct and clear feedback. Papert’s idea 
was that programming offered new contexts 
and opportunities for engaging in math-
ematics. This notion of programming as a 
language for learning and expressing math-
ematics is a bit different (see, e.g., Sendova & 
Sendov 1994; Sendova 2013) and is explicit-
ly stated as a rationale behind ScratchMaths 
(see Footnote 6).

« 55 » ScratchMaths is one beautiful ex-
ample of infusing programming directly into 
grade-level-required mathematics for nine- 
to eleven-year-olds. At EDC, we are extend-

8 | A not uncommon six-year-old’s pronun-
ciation of “eighth.”

ing that range, building programming into 
elementary-school mathematics for children 
aged 6 through 11. This new work – current-
ly focused on second grade (seven- to eight-
year-olds) – builds on Think Math (Golden-
berg & Shteingold 2007a, 2007b), inspired 
by the brilliant, playful, puzzle-centric ideas 
of Sawyer (2003) and Wirtz et al. (1964), de-
scribed earlier. It is driven by state-required 
mathematical content and practice, not by 
presumed computational thinking (CT) 
and computer science (CS) goals, building 
programming content and skills as needed 
to serve mathematical purposes. But, of 
course, to serve the ultimate goal of giving 
children a language for their mathematics, it 
must, over time, also develop programming, 
not be limited to a few basic commands, not 
be an app for teaching math. Though the 
necessary constraints presented by the for-
mal requirements of state-wide schooling 
narrow the range of programming projects 
we can choose, the puzzle/surprise/research 
principle can survive quite well, even when 
constrained by conventional content.

« 56 » Initial programming experiences 
for young children can be quite open – di-
recting the actions of a robot, or even just 
code-streams of interesting effects – but 
if the explicit intent is to give seven-year-
olds a language that lets them experiment 
with and express the mathematics they are 
learning, the first coding experiences must 
be simple enough not to be distraction or 
overhead, must be directly connected with 
the mathematics they are learning, and must 
be full of room for puzzling and exploring. 
To keep the intellectual focus on mathemat-
ics – not the mechanics of typing or the 
placement of semi-colons – our team chose 
the blocks-based language Snap!, motivated 
by and visually similar to Scratch, but with 
capabilities and constraints optimized for 
mathematical programming. Though first 
programming experiences will necessarily 
be simple, even young children can encoun-
ter key elements of computational think-
ing – expressiveness of a “live” language, a 
drive toward abstraction, simple iteration, 
and more – in their mathematical learning, 
supporting the mathematics and becoming 
a foundation for later years’ learning of more 
sophisticated programming techniques, 
with consequently increasingly varied appli-
cations, as they need them.

« 57 » We have created a sequence of 
microworlds (and continue to create more) 
– each comprised of a limited command-set 
in Snap! and a set of puzzles to solve (some 
purely exploratory, some narrowly focused) 
through programming. Over the course of a 
year, children encounter four to six of these 
microworlds, each designed to support, en-
hance and extend one or more mathematical 
topics and practices of their grade.

« 58 » One of our microworlds displays 
a number line, optionally settable for any 
range depending on the grade level, pur-
pose, and accompanying puzzle. The ticks 
mark regular intervals, but interval size is 
completely settable (consecutive integers, 
consecutive eighths, skip counting by any 
amount, starting at any arbitrary number). 
For the seven-year-olds, the ticks identify 
consecutive integers, and only one number 
(usually 0) is labeled, intentionally chosen 
not to be the leftmost mark on the line (Fig-
ure 16).

« 59 » The seven-year-olds have a pal-
ette of programming blocks, initially just the 
ones shown in Figure  17. Clicking a block 
performs the indicated arithmetic, shows the 
corresponding movement on the line, and 

0

Figure 16 • A number line with ticks repre-
senting consecutive integers.

Figure 17 • The initial programming blocks for 
the number line microworld.
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labels the result. For example, clicking the +5 
block moves the sprite 5 spaces right (arc de-
fault, but optional) and marks the new num-
ber. If the sprite had already been moved to 
3, we see the display shown in Figure 18.

« 60 » Two more blocks let them clear 
the line and restart at some number (default-
ing to 0) and let them choose the puzzle they 
want to work on. They also get two buttons: 
one lets them save their work, and one lets 
them make their own new block. Of course, 
they may also just play with the blocks they 
have, without aiming to solve a puzzle.

« 61 » Children explore the tools with 
very open puzzles like “How many of the 
numbers from 1 to 10 can you label?” Many 
initially experiment with no particular plan, 
but several of the children became interested 
in the pattern produced by the arrows, and 
tried systematically to label all the numbers 
in a “pretty” way.

« 62 » Olivia, a young seven-year-
old, created the script shown in Figure  19, 
and explained how she solved the puzzle. 
She said “I just went plus 3, plus 3, minus 
5. Then, if I click again, it’s 2. I just click it 
fifteen times.” Nobody asked why “fifteen.” 
Five clicks will do. This is a wonderful infor-
mal example of reasoning by mathematical 
induction, from a seven-year-old!

« 63 » When the children have learned 
how blocks can be snapped together to cre-
ate a script, more focused puzzles of increas-
ing challenge require them to experiment, 
plan, predict results based on mental arith-
metic and even explain results. Two puzzles 
are shown in Figure  20, as they appear to 
children.

« 64 » Jake asked if they could make a 
block. Yes! We illustrated with Olivia’s script. 
Just click the make a block button, name 
the new block – in this case, they named it 
“+1” because that is what it was intended 
to be – and drag in the script that made it 
work (Figure 21). The result was a new block 

 that they can use.
« 65 » Later, another given block allows 

children to combine steps before (or with-
out) creating a new block. Instead of draw-
ing separate arrows for each of the three 
steps in Olivia’s algorithm, the combined 
script (Figure  22) shows only the resulting 
arrow, a single +1 arrow from one number 
to the next. The abstraction serves both 
mathematical and CS/CT goals.

« 66 » Some puzzles ask for two dif-
ferent scripts that do the same thing. As it 
turns out, Olivia’s script and her explanation 
of it solved two advanced puzzles that the 
class had not yet encountered: one asks for a 
script that moves from 0 to 1; the other asks 
children to analyze two scripts (Olivia’s and 
another) and explain why they do the same 
thing. Teachers can hold class discussions to 

analyze and explain why a script does what 
it does, or to predict a result that is not vis-
ible on the segment of the number line that 
they see. For example, shown a script that 
moves from 0 to 1, one puzzle asks children 
to “predict where these scripts will land 
if you start at 19,” a number that does not 
appear on their screen. And then there are 
proof-challenges “Is there a way to move 
from 0 to 1 in exactly 2 moves?” or “What is 
the shortest script that…?”

« 67 » Children routinely visit negative 
numbers, often by accident, but sometimes 
on purpose, and always with no fuss and no 
fanfare. Many children have heard of them 
and are fascinated by them; most children 
get excited, announce these events, and oth-
erwise ignore them and move on. A few ask 
questions, and the simple answer is “You 
know how to get back to the positive side if 
you want to.” This does not obligate any ex-
plaining or “teaching” about negative num-
bers; negative numbers are not in the early 
grades’ curriculum, but the experience is 
valuable (and builds some correct intuitive 
ideas) before formality is mandated.

0 3 8

Figure 18 • A move of  from 3 to 8.

Figure 19 • Olivia’s algorithm for getting 
from 0 to 1 (left) and the pattern it drew after 

many uses.

Figure 20 • Two programming puzzles.

Make a script that
starts at 0 and

ends at 2.

Try to make
a script that starts
at 0 and ends at 2
and doesn’t use

the –3 block

0

Figure 21 • Definition of the  block. Figure 22 • The combine steps block performs 
the arithmetic before drawing arcs.
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« 68 » Because puzzles like these “have 
legs” mathematically, they can grow with the 
child and serve learning in later grades. At 
the simplest, the very same puzzle set can be 
used on a “zoomed-in” view of the number 
line, to explore fractions (Figure 23). In place 
of , , etc., children now puzzle 
with

 
,
 

, etc., with similar puzzles 
challenging them to mark 1/4, 2/4…. If these 
puzzles feel so familiar as to be “trivial,” that’s 
part of the point; these new numbers, frac-
tions, behave in the familiar way because 
they are just numbers; 3/4 + 3/4 gives 6/4, not 
the canonically wrong 6/8.

« 69 » Another variant changes the 
available blocks to ± 6 and ± 9 and challenges 
children to label all the numbers they can. 
Both show how versatile this one puzzle for-
mat is, capable of addressing later grade-level 
standards (e.g., fractions, factors, multiples, 
common factors, analyzing patterns, build-
ing fluency with multiplication facts) and 
foreshadowing in grade-appropriate ways 
ideas children will make explicit later.

« 70 » In the same way, students build 
and compose functions. The seven-year-olds 
have a set of function blocks for ± 1, ± 10, 
and ± 100, each with an input slot like this 

. Children can type a number in the 
slot  and then when they click on 
the block, it performs the operation, e.g., 

 or . They can also 
compose functions by dragging one into the 
input slot of another . This two-step 
process adds 1, then adds 1 to the result. 
Again, children can capture that process and 
give it a name to say what it does 
. Also, as before, the familiar dinosaur and 
butterfly offer puzzles: Can you make a block 
that adds 200? That adds 0? That adds 9? That 
adds 99? That adds 19? That subtracts 2? That 
adds 8? That subtracts 9? The last often turns 
out to be significantly more challenging than 
the others.

« 71 » Standard approaches push for au-
tomaticity at adding or subtracting 9 and 8 to 
single-digit numbers, relying on paper-pen-
cil algorithms for larger computations. But 

by seeing these operations as easy, automatic 
two-step algorithms, students can perform 
the same calculations with any number, an 
idea that generalizes to many other approx-
imate-then-adjust approaches.

« 72 » In later grades, children encoun-
ter essentially the same idea, and compara-
ble puzzles, with multiplication and division. 
They start with blocks × 2, ÷ 2, × 10, ÷ 10, 
× 100, ÷ 100, and can compose operations 
like  and  into 
two-step algorithms like  

. Comparing such two-step 
processes to one-step operations they al-
ready know lets them produce new blocks, 
like .

« 73 » With verbal (not written!) prac-
tice structured to take advantage of our 
“built-in” cognitive expectation of the dis-
tributive property and of the linguistic relat-
edness of, for example, six, sixty, six-hundred, 
it is relatively little work for (most) children 
to learn to halve any number mentally. The 
pattern of multiplying by 10 is even easier 
to acquire. (The reason why the “tack-on-a-
zero” pattern works is often harder to grasp, 
but worth building.) In any event, for many 
children who have built those two skills, the 
experience of inventing and building a × 5 
machine as either  or  
lets them become quite adept at mentally 
multiplying any two-digit numbers by 5, 
supplementing the one-digit facts that their 
teachers and parents want them to acquire. 
Again, the puzzles ask them to invent a vari-
ety of new tools like × 4, ÷ 4, × 100, and so on. 
And, again, they play.

« 74 » It is clear where these puzzles are 
going mathematically, but where are they go-
ing creatively? Let us look again at the sense 
in which these are “puzzles” and not just 
standard exercises.

« 75 » In the earliest puzzles – compos-
ing ± 1, ± 10, and ± 100 blocks to build new 
blocks like – the children create 
many special blocks themselves, mastering 
the reasoning: composition of mentally easy 
and understandable place-value-based oper-
ations to do more “difficult” operations. They 
are learning not just a specialized trick or two 
but a way of thinking, a way to invent math-
ematical methods. We pose only a limited set 
of puzzles, both because we cannot think of 
all possibilities and also because there is no 
need to; we deliberately leave room for the 

children to play. And they do play. A lot. No-
body chooses (or sticks with) play that bores 
or defeats them, so the children create their 
own differentiated learning. The challenges 
they create for themselves are (generally) 
precisely at their own frontiers of knowl-
edge, skill, cognition, and interest in ways we 
could not have known. Part of this readiness 
to play appears to be the direct result of hav-
ing a notation system (programming) that 
is active, unlike marks on a paper that just 
sit there passively. They treat these tasks as 
puzzles, trying to see – just as they might on 
a playground – what new trick they can do. 
Standard math problems are “done” as soon 
as one has written a number on the page.

« 76 » Of course, mathematics is more 
than arithmetic, so an approach that uses 
programming as an expressive language to 
support mathematical learning must provide 
vocabulary and methods for handling shape, 
size, angle, distance, structure…, and good 
situations – puzzles – in which to explore 
those ideas. ScratchMaths gives a beautiful 
example of a focus on angle, distance, and 
structure – structure in the code itself as well 
as in the visual, often symmetric, designs it 
produced. Angle is subtle in many ways – not 
just the conventions for quantifying angles in 
degrees and the modularity of that quantifi-
cation, but also just the multiple meanings 
and images of angle – and consequently hard 
to present in a clean way to seven-year-olds. 
But young children can create code that nav-
igates a map and they particularly happily 
play with puzzles involving distance and di-
rection on simple grid-like maps of “towns” 
in which various buildings (houses, schools, 
libraries) are personalized with the children’s 
own names. (“You’ve found paths between 
Mia’s and Adam’s houses that are four blocks 
long. You’ve found longer paths that are six 
blocks long. Can you find a path that is ex-
actly five blocks long?”)

« 77 » Producing and interpreting small 
arrays as images of multiplication is mandat-
ed mathematical content, and the relevant 
puzzles can be fun and attractive. Children 
generate colorful rows (solid or patterned) of 
repeated squares, and arrays from repeated 
rows, and the similarities of the algorithms 
inside draw row and draw array illustrate the 
meaning and value of “abstraction.” Abstrac-
tion includes both generality and “hiding 
complexity” – suppressing details or iden-

0 1
4

2
4

Figure 23 • Zooming in on the number line.
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tifying the important characteristics for a 
particular purpose – by creating a single 
new command/function to replace a longer 
collection of instructions that would other-
wise have to appear in several places. Older 
children may parameterize their blocks that 
draw rows or arrays. A draw array block de-
pends on two parameters, the dimensions of 
the array; a draw rectangle block is a further 
(simpler) abstraction, using the same two 
inputs but drawing only the border of the ar-
ray. For either of these, older children might 
invent a playful quiz, having their program 
draw a random-sized array and ask about 
area (how many tiles it has) or perimeter, us-
ing their own reasoning about those inputs 
in order to teach the program how to calcu-
late the correct answer.

« 78 » At the high-school level, pro-
gramming allows students to build the 
mathematical objects and processes that 
they are studying: relatively easily, they can 
build functions that manipulate polynomi-
als, transform points with matrices, render a 
set of points in space in a convincing projec-
tion on the screen (Lewis 1990), and study 
algebraic structures (Cuoco 1990). And tools 
such as Geometer’s Sketchpad or Cabri – not 
programming as it is usually thought of, but 
programming nonetheless, with construc-
tion specified by the students rather than 
just use of the computer to manipulate pre-
designed models – allow students studying 
geometry to build models of mathematical 
objects and ideas, and to explore the conse-
quences of manipulations of those models.

Programming in general

« 79 » The current excitement with 
“coding for all” creates a challenge. There is 
no more room in the curriculum. If coding 
(for coding’s sake) is added, what gets shoved 
out of the way? But if coding is learned in ser-
vice of content that is already core, it is not a 
displacement. Our motivation for program-
ming in elementary-school mathematics 
was for the sake of the mathematics – not an 
“extra,” but an improvement of content that 
is already core. It also serves the push for 
“coding.” Mathematics is not the only core 
context in which programming could poten-
tially serve as a supportive, non-distracting 
medium but, at the elementary-school level 

– especially in the early grades – it may be 
the easiest and most natural. And what sev-
en-year-olds can do allows eight-year-olds to 
do more. Incrementally, it sets a strong foun-
dation for secondary students’ learning.

« 80 » Moreover, genuine continuity can 
be achieved. Beauty and Joy of Computing 
(BJC)9 is an entirely separate piece of work, 
an Advanced Placement Computer Science 
course whose explicit mission is broadening 
participation in computer science. In service 
of this goal, BJC takes on computer science 
with a programming-centric approach, let-
ting students experience the joy of creation 
and see beauty not only in the objects they 
can produce through programming, but also 
in the programs themselves. It introduces 
the elegance of recursion and higher-order 
functions, making these reputedly “diffi-
cult” topics accessible by virtue of the lucid 
visual imagery of Snap!, a language that is 
not unreasonably characterized as Scheme 
disguised as Scratch.

« 81 » Initial funding for BJC required 
it to be an Advanced Placement course with 
a framework dictated by the College Board. 
Even so, except as constrained by AP re-
quirements, BJC is largely project-based 
with experience before formality; the ex-
plorations through which programming is 
learned include projects set in contexts like 
art and graphics, linguistics, mathematics, 
and games. While BJC is not at all a math 
course, its activities naturally touch – and 
help teach – many conventional mathemati-
cal content topics, and its approach to pro-
gramming is consistently focused on math-
ematical and computational thinking (CT). 
The reason it introduces various contexts – 
the arts, linguistics, etc. – is partly to meet 
the varied interests of students, but much 
more to show how broadly programming 
applies, how broadly the students can allow 
their ideas and creativity to wander, how 
much they can tailor their own projects, for 
which the AP framework allocates time, in 
their own personal direction.

« 82 » Even though BJC is explicitly an 
AP course for high school, excerpts involv-
ing recursion were used successfully in a 
computer science elective with sixth graders. 
They wrote recursive code to draw a com-
plex tree, and here they and their teacher are 

9 | http://bjc.edc.org

giggling at the result of a gossip-producing 
program with a randomly invoked recur-
sive step that, in this case, generated a very 
long sentence (Figure 24). Other students in 
this elective created a program to conjugate 
Spanish verbs properly so that they could 
generate sentences in Spanish. They tested 
the work of their programs by using map, a 
higher-order function, to apply their conju-
gation block to a list of verbs.

Playgrounds

« 83 » Giving even very young students 
a way to think algebraically using bags and 
marbles lets them invent mathematical tricks 
they love. It prepares them for algebra but 
more importantly, it lets them feel smart 
and pose problems and play with their own 
algebraic ideas. More broadly, treating math-
ematics as serious intellectual play, puzzling 
things out by searching and researching, 
and gaining the intellectual tools for posing 
one’s own challenges teaches children to be 
mathematicians. Papert suggested program-
ming as a medium for that, but the essential 
ingredient remains the promotion of serious 
intellectual play. Programming taught just as 
a skill or to meet new standards may well not 
serve that purpose. But if a programming en-
vironment lets students explore and create, 
provides good tools for doing that, and gives 
students the “third language of mathematics” 
so that as their ideas and thinking grow in 
sophistication they have a language for ex-
pressing and honing those ideas, such an en-
vironment does add a new playground con-
sistent with Papert’s vision of children being 
creatively engaged as mathematical thinkers.

Figure 24 • Surprise and delight at the 
complex result of a recursive process.
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Conclusion

« 84 » A few states, including Massachu-
setts (where I live), have begun to develop 
frameworks for CT across the grades (http://
www.doe.mass.edu/frameworks/dlcs.pdf). 
CT is variously defined but always includes 
elements like abstraction, algorithm, model-
ing and simulation, programming, and data 
(with an implication, not reflected in all im-
plementations, that “data” means big data). 
Not surprisingly, to help develop this think-
ing there has been a proliferation of on-
computer activities not involving program-
ming and also “unplugged” activities to the 
same end.10 The difficulty of adding anything 
to an already jam-packed school day has led 
to much talk about integrating CT activities 
into existing content areas, particularly sci-
ence and mathematics (e.g., https://go.edc.
org/elementary-ct), but also language. In my 
opinion, some of the integration suggestions 
are shallow, but that should be no surprise 
at a time when the whole effort is so new.11 
Still it got me to thinking about why my own 
inclination has been toward programming, 
not away, and toward abstraction, and algo-
rithm rather than modeling and simulation, 
whenever the aim is explicitly to integrate 
with other subjects.

« 85 » I think my particular leaning 
may be largely bias, possibly the result of 

10 | As I was completing this article, I received 
a copy of Bebras (http://www.bebras.lt), a set of 
activities, many puzzle-like, that I found quite ap-
pealing, all designed to develop various elements 
of CT in students.

11 | And, clearly I, myself, am being a bit 
shallow in using the vague quantifier “some sug-
gestions.” Of course, in any situation, some sug-
gestions will be shallow.

my greater focus on elementary and middle 
school, and greater focus on mathematics 
than on science. At the elementary-school 
level, modeling and simulation seem easier 
to integrate with science than with math-
ematics; programming, along with abstrac-
tion and algorithm, seems easier to integrate 
with mathematics than with science.

« 86 » Modeling, for example, is some-
thing that mathematics (and mathemati-
cians) can do, and since mathematics can 
build models of mathematical ideas, model-
ing is also something that mathematics uses. 
But, at least as far as I see at the elementary-
school level (especially in the early grades) 
modeling with mathematics – creating 
mathematical models of phenomena – is 
very limited. And it is fairly abstruse, in the 
following sense. While every mathematical 
statement (like “there are seven cows”) is an 
example of an abstraction (the cowness is re-
duced to irrelevancy) and just a model of the 
experiential reality, no child in the known 
universe thinks of such a statement as an 
abstraction or a model. That level of abstrac-
tion is so normal to them that it is totally 
“invisible” – it is just what language does. 
By contrast, modeling is a natural place to 
focus in science – the core of experimenta-
tion and the form of many scientific claims 
– and simulation (at least as generally used) 
is an automation/extension/elaboration of 
modeling.

« 87 » Programming is exactly the op-
posite, easier to integrate into (early) math-
ematics than into science. (Of course, take 
this with a grain of salt, as I have not given 
scientific programming nearly as much 
thought. As I advertised, these are wild final 
thoughts that I might disown tomorrow.) 
That may be partly because the kinds of 
statements one makes in early mathemat-

ics tend to be about relationships and about 
simple processes. “Writing a program” that 
enacts a function, like doubling or adding 
10 to its input, is easy programming. In-
deed, it is easier to write in a general way as 
a program (a Snap! block) than as a paper-
pencil scrawl, because a program is an ac-
tive notation; it will perform the action and 
give feedback, which paper-pencil scrawls 
do not. It is also a structured notation, im-
posing a bit of order on what young stu-
dents typically scatter over a page in a way 
that, even if totally correct, does not reveal 
their logic. Similarly, writing a program that 
pairs elements of two sets, writing a pro-
gram that draws simple shapes, or creates 
arrays or paths to study, is mathematically 
on task and easy programming. By contrast, 
most scientific phenomena are too complex 
for young children to model by writing a 
program (often pretty complex even for 
adults).

« 88 » I would love to get reactions to 
this last, very spur-of-the-moment rumina-
tion. What genuine programming activities, 
at the elementary-school level, can be inte-
grated with science in a developmentally 
appropriate and scientifically relevant way? 
And what modeling or simulation activities, 
again at the elementary-school level, can be 
integrated sensibly with mathematics?
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> Abstract • Supporting the inborn cu-
riosity of children is the motivation for 
our involvement in developing novel 
curricula, textbooks and microworlds. 
Our main goal of implementing the 
constructionism as a fundamental edu-
cational strategy is to keep the students 
“as question marks,” i.e., to encourage 
them to pose questions, to make experi-
ments, to invent their own problems. We 
strongly support the ideas behind Gold-
enberg’s experience in learning environ-
ments, generating curiosity and creative 
engagement (§15). As an extension of 
the ideas in §54 we propose a metaphor 
to visualize how programming can be 
“repurposed” to wrap the math in an at-
tractive, yet educationally effective way.

“Children enter school as question marks 
and leave as periods.” 

(Postman & Weingartner 1969: 53)

Can you solve my problem? – 
Supporting students to invent their 
own problems
« 1 » In 1999 Seymour Papert formu-

lated the Eight Big Ideas Behind the Con-
structionist Learning Lab.1 Two of them are 
hard fun and taking time. The problem with 
implementing them in the regular school 
setting is that it “is even more rigidly con-
strained than it used to be,” as Paul Gold-
enberg states in §1 of his target article. It 

1 | https://inventtolearn.com/8-big-ideas-of-
the-constructionist-learning-lab/

Open Peer Commentaries
on Paul Goldenberg’s “Problem Posing and Creativity 
in Elementary-School Mathematics”
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is not easy to evaluate the achievements of 
students and teachers, creatively engaged in 
mathematical activities, especially if assess-
ment instruments are focused on multiple-
choice tests. Still, Goldenberg demonstrates 
how children in the (pre-)primary school 
can be supported in solving and creating 
math problems. This requires dedicated 
teachers who enjoy challenges posed by 
children and look for children’s reasoning.

« 2 » Goldenberg shares his fascination 
with an “algebraic approach to teaching el-
ementary arithmetic” in which the emphasis 
is on “play and surprise” (§12). Although the 
content corresponds to the level expected 
for the grade, it challenges the children to 
do research, to observe patterns, to figure 
out why a puzzle works, to create ones of 
their own. This serves as a propaedeutic for 
the formal algebraic language they will learn 
later.

« 3 » In this context the reward is not to 
get a single correct answer. To see the gen-
erality, “to create that abstraction for them-
selves, children need research time” (§30) 
– to illustrate the instructions of the math 
trick by their own pictures, to try the trick 
with different numbers so as to extract the 
general rule, and finally to figure out how to 
construct their own tricks (§§28–48).

« 4 » The technique of interpreting 
linear equations with bags and marbles is 
implemented in various virtual environ-
ments providing students with platforms for 
understanding ideas behind formal manip-
ulations. A focus on algebra as a language 

for describing relationships of quantities 
manifests itself in the computer environ-
ment Marble Bag Microworld, developed by 
Wally Feurzeig (1986) as a machine imple-
mentation of the idea presented in 1964 by 
Sawyer (2003) and implemented in Wirtz et 
al. (1964) (§12). Students are introduced to 
standard algebraic notation by creating and 
solving story problems. They observe the 
correspondence between the iconic, Eng-
lish, and standard algebraic representations 
(Figure 1). The goal is that “these activities 
provide a cognitive foundation for students’ 
understanding of operations on equations” 
(Thomson 1989: 13).

« 5 » An example of the work of Equa-
tion Balance by Pavel Boytchev is shown in 
Figure 2. It features scales with golden bars 
(units) and boxes (variables) representing a 
linear equation. The initial problem can be 
solved in different ways, and then the solu-
tion is used as a generator of new problems.

« 6 » Tom McDougal, a math teacher 
from Chicago, extended Equation Balance to 
allow variables on both sides, negative val-
ues and custom equations. He described the 
usage of the application with eighth-graders 
as “fabulously effective” (Boytchev 2019).

« 7 » An interesting question consid-
ered in Goldenberg’s §66 relates to how 
children explain different scripts doing the 
same thing. We arrived at such a situation 
in the Weblabs project (Gachev, Sendova 
& Nikolova 2005). Sixth-graders from Bul-
garia and Portugal had created ToonTalk ro-
bots producing seemingly the same infinite 

sequence. After comparing the algebraic 
representations and the Logo procedures 
the final proof of equivalence was given by 
means of the difference equations theory. 
All the problems created by children pre-
sented in the target article have arithmetic 
(later algebraic) content. As far as geomet-
ric content is concerned, such experience 
is very limited. In Bulgaria, stereometry is 
introduced in the fifth and sixth grades, the 
focus being on learning the formulae rather 
than on stimulating spatial imagination, or 
on formulating problems. An approach to 
improving the situation was offered by the 
DALEST project (Developing an Active 
Learning Environment for the Learning 
of Stere ometry) (Boytchev, Chehlarova & 
Sendova 2007). Students from five coun-
tries were provided with applications to ex-
plore the properties of 3D objects, to solve 
and formulate their own problems. Here is 
an example of a problem created by Koya, 
a 12-year-old girl (Chehlarova & Sendova 
2009):

“ Koya’s problem: Eliminate a cube from each 
of the compositions in Figure  3 so as to get re-
spective compositions for which each layer (along 
each direction) contains a cube of each color pres-
ent in the composition.”

« 8 » The steps Koya took in the process 
of creating a problem were verbalizing the 
idea to use a two-color composition of size 
3x3x3; adding additional cubes to generalize 
the problem with three colors; and tuning 

Figure 1 • Screenshots of the work of Thompson (1989) with a prototype of the software developed by Feurzeig. Left: Creating a secret number 
story, translated in English and in algebraic notation; Right: Using virtual marbles and marble bags to represent each line in the story.
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the formulation to a language closer to that 
of everyday life. These steps were described 
in a DALEST scenario to be used by other 
students for creating their own problems.

« 9 » What we observed in children’s 
work was that they were eager to show their 
problems to peers and observe their reac-
tions. The children shared the way of com-
posing the problem, discussed some errors, 
and modified the original composition into 
new problems.

Happy Birthday, Miss Pencheva! – 
Inventing problems as presents
« 10 » An interesting series of logical 

problems appeared as a collective present to 
Galya Pencheva, a dedicated math teacher 
and graduate student at IMI-BAS. Although 
she had given students the task of inventing 
their own problems on a specific topic, the 
final booklet of problems from her fourth-
graders came as a total surprise. Figure  4 
shows one of them.

« 11 » In a nutshell, the importance 
of cultivating the skill in children of ask-
ing questions, and posing and formulating 
problems should be recognized by teach-
ers and teacher educators and supported 
by the designers of learning environments. 
And the novel learning environments (digi-
tal and non-digital alike) would gain from 
“stepping on the shoulders” of educational 
giants such as Sawyer (§12).

The centrality of question asking
« 12 » Stephen Brown and Marion Wal-

ter (2005: 3) state,

“ [t]he centrality of problem posing or question 
asking is picked up by Stephen Toulmin in his ef-
fort to understand how disciplines are subdivided 
in sciences.”
They refer to this passage in Toulmin:

“ If we mark the sciences off from one another 
[…] by their respective ‘domains,’ even these do-
mains have to be identified not by the types of 
objects with which they deal, but rather by the 
questions which arise about them […]” (Toul-
min 1977: 149)

« 13 » Studying disciplines separately 
simplifies things, allows us to stay focused 
and is useful in the short term, but in the 

6x+14=38

6x=24

x=4

3x+7=19 3x+3=15 x+1=5

4x=16

+9

4x+5=21

x+9=13 11x+99=143 11x+29=73

Initial
Problem Solution

New Problem

Another
New Problem

–14 /6

/2 –1–4 /3 *11 –70

*4

+5

Figure 2 •  Equation Balance – problem solver and problem generator.

Figure 3 •  Compositions with two and three colors.

The 4th-graders taught by Miss 
Pencheva decided to create problems as 
a present for her birthday. They made 
rebuses, equations and diagrams. 
10 children made rebuses, 12 made 
equations and 6 of those who created 
equations had not made diagrams. 3 
children created problems of each of the 
3 types. Those who invented problems 
on diagrams and rebuses but not on 
equations were half as many in number 
as those who invented equations and 
rebuses but not diagrams. There was 1 
child who invented only rebuses. Those 
who created problems on diagrams and 
equations but not on rebuses numbered 
3. How many children created only 
problems on diagrams?

Figure 4 •  Left: The original formulation of one of the children’s greeting problems. 
Right: Translation.
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Problem Posing and Programming  Mattia Monga

long term – it is devastating. This is some-
thing we observe in our work with under-
graduates and with in-service and pre-ser-
vice teachers. They find it difficult to apply 
their knowledge from one field to another, 
and even worse – they cannot imagine that 
they could do it. After discussing how to vi-
sualize the problem, one of us came up with 
the following metaphor.

Boytchev’s metaphor
« 14 » Every science consists of a ker-

nel (candy) and an interface (wrapper). 
In mathematics the kernel is the genuine 
mathematical knowledge – mathematical 
notions, phenomena, models, etc., whereas 
the interface is the mathematical language 
to access and express the kernel – formulae, 
variables, etc.

« 15 » Similarly, the sorting algorithms 
belong to the kernel of programming, while 
the programming languages are the inter-
face. Every science has its specific, unique 
interface, but their kernels share a lot of 
common features. The appearance of multi-
disciplinary sciences (bioinformatics, astro-
physics, computational neuroscience, etc.) 
is an attempt to use the interface of one sci-
ence with the kernel of another – this leads 
to new ideas and discoveries.

« 16 » The problem with working with 
younger children is that it is difficult for 

them to unwrap the candy. If the kernel is in 
a child-friendly wrapper, they will be eager 
and will be able to unwrap it. We find the 
same idea in Goldenberg’s §54. Program-
ming can be “repurposed” to wrap the math 
in an attractive, yet educationally effective 
way. It is not used to replace the formal 
interface, but is used to reach the core and 
eventually to master the formal math lan-
guage later on (Figure 5).

« 17 » In response to Goldenberg’s §88 
we would paraphrase Richard Feynman 
(1999: 4): that even though we do not know 
the answer we find it optimistic to keep try-
ing new solutions since this is the way to do 
everything.
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> Abstract • Finding tasks to propose 
to children, able to generate curiosity 
and creative engagement without hav-
ing just gamified school exercises is 
very difficult. The appeal of a traditional 
curriculum is its (deceptive) scalability. 
Programming as a language is a power-
ful metaphor, much more powerful than 
the one suggested by using simple, pre-
defined building blocks that fit well to-
gether.

Creativity, puzzles, and educational 
agendas
« 1 » In the target article Paul Golden-

berg argues that puzzles have the potential 
to engage children in a genuine mathemati-
cal research activity, even more so when 
they are requested to produce variants of the 
puzzles they solved (§§1–50). Goldenberg 
shows interesting examples that are both 
surprising and generate curiosity (as prom-
ised in §16). However, from my experience 
with the organization of a computational 
thinking contest in which every year we pro-
pose tasks to students with similar goals to 
those in Goldenberg’s scheme, I learned that 
it is not easy to keep the bar of surprise and 
curiosity high while pursuing an education-
al agenda. If one wants to cover a specific 
curriculum, it can be hard to come out with 
clever puzzles instead of trivial gamified ex-
ercises unable to fully engage the creative 
impetus of children.

Puzzles and the appeal of abstract 
thinking
« 2 » Mathematical puzzles have a very 

long history: several examples from Greek 
or Vedic mathematics are well known and 
they amused generations of curious stu-
dents. They were probably invented to sum-
marize or exercise mathematical knowledge, 
but also to make the abstract nature of math-

ematics more palatable to the general public. 
This is why we found them not only in the 
mathematical literature, but also in writings 
directed to a wider audience. For example, 
the well-known Diophantus’ epitaph:

“Here lies Diophantus,” the wonder behold.
Through art algebraic, the stone tells how old:
“God gave him his boyhood one-sixth of his 
life,
One twelfth more as youth while whiskers 
grew rife;
And then yet one-seventh ere marriage 
begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his 
father’s life chill fate took him.
After consoling his fate by the science of 
numbers for four years, he ended his life.”

was not found in a mathematical text, but 
came to us from a collection of Greek epi-
grams and short poems (the Anthologia Pa-
latina) directed to a general audience.

« 3 » Today the use of puzzles, riddles 
and other short challenges to complement 
or aid the learning of mathematics is 
popular, as testified by several successful 
initiatives, able to engage millions of 
school pupils every year. One of the 
most widespread is the Kangourou des 
Mathématiques with about 6,000,000 
participants from 78 countries, see http://
www.aksf.org/statistics.xhtml. It is a game 
contest created in 1991 in France by André 
Deledicq on the model of the Australian 
Mathematics Competition, with the goal of 
contributing to the popularisation and the 
promotion of mathematics among young 
people with the contest, but also through 
the associated distribution of a massive and 
pleasant documentation on mathematics to 
the participating pupils and their teachers.

« 4 » The Kangourou game-contest idea 
was brought to informatics and computa-
tional thinking by Valentina Dagienė, who 
in 2004 started the Bebras challenge.1 Bebras 

1 | Bebras is the Lithuanian word for beaver, 
an animal that is somewhat common in Lithu-
anian folklore and is iconic of a major computer 
science problem, the “busy beaver.” See https://
www.bebras.org About 3,000,000 participants 
from more than 50 countries took part in 2019.

tasks are designed to promote interest in 
informatics through recreational although 
educational activities (not necessarily com-
puter-based). Participants are usually super-
vised by teachers who may integrate the Be-
bras challenge into their teaching activities.

« 5 » Both Kangourou and Bebras are 
successful initiatives, at least judging by their 
popularity among students and, even more, 
among teachers who see their pupils enthu-
siastically engaged with the subject they love, 
compared with the boredom and ineffective-
ness generated by traditional approaches. 
However, finding the right tasks to propose 
to children, able to “generate curiosity, the 
creative engagement that Papert referred to 
as the experience of the mathematician” as 
Goldenberg writes in §16 of his target article 
without having just gamified school exer-
cises is very difficult and takes the efforts of 
a whole research community as varied as 
Kangourou or Bebras ones. I doubt a single 
teacher or even a classroom/school chapter 
of teachers could sustain the necessary cre-
ativity for long enough to cover the needs 
for their curricular programs. Even Bebras 
delegates often struggle to propose new task 
ideas and several parts of the area of expertise 
that Bebras aims to address remain uncov-
ered. It is not easy to categorize either Bebras 
tasks or the target competences (see Dagienė, 
Sentance & Stupurienė 2017 and Lonati et al. 
2017 for alternatives), but every taxonomy 
has items that are neglected in most editions 
and others that repeatedly attract the ideas 
of task designers every year (although often 
with simple variants of a main basic idea) 
even if the role of the issue they cover is rela-
tively marginal in Bebras goals.

« 6 » The appeal of a traditional cur-
riculum is its (deceptive) scalability: writ-
ing systematic textbooks with a large col-
lection of repetitive exercises is easier than 
designing engaging activities for a whole 
curriculum. And the creative engagement 
associated with what is successfully learned 
with well designed “research playgrounds” 
risks obscuring the value and diverting ef-
forts from more grueling areas. This does 
not mean that the project-based approach 
should not be pursued further, but it should 
remind us that we all “learned” some things 
by a rote or strictly algorithmic approach, 
and yet they came out still having a power 
in our minds.

http://constructivist.info
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Programming and learning 
mathematics
« 7 » Goldenberg argues that program-

ming can become a language for and a natu-
ral part of learning mathematics (§51). Co-
herently with the suggestions of the first part 
of the article (§§1–50) he reports on a puz-
zle-based research playground that involves 
programming. Although some more sophis-
ticated examples are mentioned (§§80–82), 
the ScratchMaths showcase proposes a pro-
gramming tool with a limited potential of 
expression, based only on simple sequences 
of predefined steps. If programming is sup-
posed to be a key mental tool to express 
mathematical ideas, this seems to me too 
limited even at the target age addressed by 
Goldenberg’s proposal.

Programming as a language
« 8 »  From a constructionist viewpoint 

of learning, programming languages may 
have a major role: in some sense they can 
be a tool for sharing “artifacts” able to ex-
plicitly show one’s theories of the world. The 
crucial part is that artifacts can be executed 
independently of the creator: someone’s 
(coded) mental process can become part of 
the experience of others, and thus criticized, 
improved, or adapted to a new project. Pa-
pert’s experiments with the programming 
environment LOGO were designed exactly 
to let pupils tinker with math and geometry.

« 9 » But LOGO is itself a formal lan-
guage, maybe more regular and simpler 
than the traditional mathematical one, but 
still requiring an effort to understand its 
precise semantics and the “notional ma-
chine” that enacts the utterances one in-
vents. In the last decade, a number of block-
based programming tools (such as Scratch 
and Snap!) have been introduced, which 
should help students to have an easier time 
when first practicing programming. These 
tools, however, while reducing the friction 
with traditional (text-based) syntactic rules 
can even make the thing more complex 
when the programmer should focus entirely 
on the processing of the pieces of informa-
tion she wants to consider. The color, shape, 
position on the screen, etc., are all things 
that could, in principle, be used to change 
the meaning of a block instruction and the 
learner may wonder if the semantics of the 
interpretation depend on these details or 

whether they can be safely overlooked. In 
general, visual programming languages do 
not seem to necessarily help students learn 
other programming languages (Lewis et al. 
2014).

« 10 » Blocks are probably a good choice 
for the very limited computational variety of 
the tasks described in Goldenberg’s article, 
in which a fixed sequence of instructions 
does the trick. The only form of program-
ming abstraction that is introduced is the 
“naming” of a value or a sequence of in-
structions.

« 11 » The metaphor of building some-
thing by putting together building blocks 
that fit well together, however, can screen 
off the epistemic power of language to ex-
press problems and suggest solutions, or 
even make them emerge as in the case of 
recursive descriptions. Moreover, if pro-
gramming is intended to be the tool able to 
make explicit one’s mental discourse, a more 
linguistic metaphor may help. According to 
Papert,

“ in teaching the computer how to think, chil-
dren embark on an exploration about how they 
themselves think. The experience can be heady: 
Thinking about thinking turns every child into an 
epistemologist, an experience not even shared by 
most adults.” (Papert 1980: 19)

And thoughts made by words and rich 
grammatical structures are closer to the way 
knowledge is developed and transmitted be-
tween generations, thus something we need 
to manage to improve ourselves.

« 12 » Expressing something in a way 
an automatic interpreter can “understand” 
(without appealing to intuition) can be 
fruitful for out-of-classroom activities, too. 
Juggling, for example, can be analyzed with 
a procedural language: the identification of 
proper sub-activities (i.e., sub-routines like 
TOP-RIGHT to recognize when one jug-
gling ball is at the top of its trajectory go-
ing to the right, or TOSS-LEFT to throw the 
ball with the left hand) may significantly 
shorten the time for acquiring juggling 
skills (from days to hours, according to Pa-
pert 1980).

« 13 » In order for this to work, however, 
some sort of identification with the inter-
preter is useful. In LOGO (but also in other 
more recent proposals such as the educa-

tional turtle library in Python) the interpret-
er becomes a “persona,” and computation is 
then carried out through anthropomorphic 
(or, better, zoomorphic, since animals are 
very common) actions. In programming, 
computational processes that evolve in time 
are described by static texts (or blocks): the 
mapping between processes and their de-
scription is not trivial and it requires a de-
tailed understanding of the interpreter, since 
its automatic nature makes it inherently 
different from a human equivalent. Educa-
tional programming environments often 
try to make the mapping more explicit with 
some visualization of the ongoing process: 
the trace left by the LOGO turtle, or some 
other exposition of the changing state of the 
interpreter.

« 14 » This seems to contradict a famous 
piece of advice coming from no less than 
E. W. Dijkstra. Speaking of anthropomor-
phism in computer science, he noted:

“ The trouble with the metaphor is, firstly, that it 
invites you to identify yourself with the computa-
tional processes going on in system components 
and, secondly, that we see ourselves as existing 
in time. Consequently the use of the metaphor 
forces one to what we call ‘operational reasoning,’ 
that is reasoning in terms of the computational 
processes that could take place. From a method-
ological point of view this is a well-identified and 
well-documented mistake: it induces a combina-
torial explosion of the number of cases to consid-
er and designs thus conceived are as a result full of 
bugs.” (Dijkstra 1985: 5)

« 15 » I agree with Dijkstra, the opera-
tional reasoning is an approach to overcome 
to be able to deal with the intricacies of 
computer science problems. The reasoning 
in terms of the computational processes, how-
ever, is not only a step in growing a more 
mature understanding of complex systems, 
but also something we need for the “think-
ing about thinking” that opens up the episte-
mological value of programming.

Conclusion
« 16 » In his abstract, Goldenberg 

claims that

“ Formal educational systems set standards and 
structures to ensure some common learning and 
some equity across students. For a curriculum to 

http://constructivist.info
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tap curiosity and the drive for challenge, it needs 
both the playful looseness that invites exploration 
and the structure that organizes contents.”
I agree that the approach of blending puz-
zles with more structured content has great 
potential, but finding puzzles apt to educa-
tional goals is hard and expensive, especially 
if one wants to cover a significant part of the 
school curriculum.

« 17 » I am also convinced that pro-
gramming can be a key language “in chil-
dren’s mathematical learning and creativity” 
(§51), but for this we need to be careful not 
to restrict unnecessarily the expressivity of 
the programming tools we give to pupils. 
A more general emphasis on informatics 
(rather than programming) as the science 
of precise descriptions for information pro-
cessing could open more powerful ideas in 
the minds of students.
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> Abstract • Crafting constructionist 
supplements to enrich curriculum is not 
easy; crafting a full set of constructionist-
designed materials for day-to-day use by 
students and teachers is downright hard; 
both are possible. If one chooses to build 
in programming, decisions about what 
computer language has the “ideal” char-
acteristics may depend on the specific 
subject matter or purpose to which that 
language will be applied. Mathematics, 
even for young children, imposes de-
mands on that programming language 
– among them, the ability to create and 
compose functions – that other expres-
sive purposes may not.

« 1 » I was glad to be reminded of the 
quotation from Neil Postman and Charles 
Weingartner with which Evgenia Sendova 
and Pavel Boytchev begin their commen-
tary: the aim to keep children as question 
marks perfectly captures the spirit of the 
1964 Wirtz materials on which I spend over 
25% of my target article and more here. 
Also, I became aware that my parochial 
use of the word “curriculum” is potentially 
misleading. In the US, the word typically 
refers to the classroom text materials that 
a school adopts for use. I easily forget that 
elsewhere, “curriculum” means “syllabus,” 
only the guidelines for which publishers or 
teachers must then create classroom ma-
terials. I apologize for any confusion my 
ambiguity may have caused. To clarify, the 
item I call “Wirtz curriculum” is a compre-
hensive text series for elementary school 
mathematics: student books and practice 
materials for grades 1–6 and teacher guides 
for K-6 (see my §12). Throughout my ar-
ticle and this response, please interpret my 
use of “curriculum” to mean students’ and 
teachers’ classroom materials.

« 2 » While no part of my purpose in 
the target article is to promote an out-of-

print 17-volume school text from 1964 that 
is not even of my own creation, or to pro-
mote a particular programming language 
that is also not directly influenced by me, I 
devote even more time to them here in this 
response, because understanding them bet-
ter may help clarify the two main purposes 
of my article:
a to show that it is possible to develop a 

“conventional” print school-text that is 
scalable and effective (in schools, us-
able by teachers, published by a large 
commercial publisher) and yet teaches 
mathematics, not just arithmetic, by 
teaching mathematics through arithme-
tic and by letting students do and create 
mathematics;

b to show how, though programming is 
not an essential component of construc-
tionist thinking, an appropriately de-
signed programming language, learned 
and used thoughtfully, can provide even 
young children with a valuable expres-
sive and exploratory medium for math-
ematics and can in that way support, 
deepen, and enrich the learning of that 
mathematics.

My focus is mathematics, not informatics.

http://constructivist.info
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Curriculum design requires theory, 
craft, and anxiety-tolerance
« 3 » That constructionism does not 

require programming is well known: In 
describing the new constructionism he pre-
sented, Seymour Papert himself often used 
non-programming examples, including his 
boyhood interest in gears and the samba 
school. Yet, understandably, Papert put 
great stock in programming, as does much 
discussion on constructionism. As Chronis 
Kynigos and Gerald Futschek say (2015: 
281), “bricolage with expressive digital me-
dia has a primary role” in constructionist 
learning.

« 4 » Both commentaries – the one by 
Sendova & Boytchev, and the one by Mattia 
Monga – give great non-programming exam-
ples of opportunities for children to think 
and create in specifically mathematical con-
texts. Kangourou is an excellent example 
of stimulating mathematical problems, not 
dependent on computers or projects; Be-
bras connected with computational think-
ing is also not reliant on a machine. Both 
are widely known and prized. Sendova & 
Boytchev (§10) value not only children in-
venting puzzles, but getting teachers, educa-
tors and designers to value it as well. Clearly, 
I concur – this is my own experience and 
consistent with claims I make in my article 
– but that raises a long-standing anxiety: I 
wish I had more trustable evidence to sup-
port my claims, and confess that I do not 
see how to get it. Quoting Richard Noss and 
James Clayson,

“ instructional effectiveness depends on many 
variables, not least the nature of technology, a field 
that is chaotic in the literal sense: tiny changes in, 
for example, the user interface can make massive 

changes in learning. The primary point is that in 
order to ‘test’ theory, it is necessary to maintain 
a gap between the pedagogical strategies at stake 
and the theories that motivate them […]” (Noss 
& Clayson 2015: 286)

« 5 » Even print materials have a “user 
interface.” The amount, nature, and clarity 
of language can make a huge difference, es-
pecially for young children. Even tiny visual 
details can matter. When we were designing 
Think Math (EDC 2008) inspired by Robert 
Wirtz et al.’s Math Workshop from 1964, we 
first used the original 1964 form – lacking 
white spaces between columns – of the puzzle 
shown in Figure 9 of my article. By focusing 
on students’ experience, not just on overall 
outcomes, we saw many students looking for 
patterns along horizontal rows and, finding 
none, asking for help. Though help was easy 
to give, and sufficed, students’ experience, if 
only briefly, was the I-do-not-get-math mes-
sage that nags at some children until they be-
lieve it. Our refinement changed nothing but 
layout, adding space between the columns. 
Students’ mathematical learning seemed 
roughly the same both ways, but that extra 
space between columns made an observable 
difference in students’ independence and in 
the smoothness of their learning.

« 6 » Alas, there are many such tiny 
things, so many that we cannot possibly 
notice them all or convey them reliably to 
the next generation of designers so that the 
field grows the way we imagine automo-
tive engineering to grow. Any intervention 
– curriculum, teaching strategy, whatever – 
is a complex object, a mélange of so many 
craft elements along with the undergirding 
theory that even if it “works,” it is hard to be 
sure why, or know what seemingly irrelevant 

tweak could have made it work better, or 
worse. What element is most responsible for 
success? How do the features interact? How 
much of the intervention’s effect on students 
is attributable to its effect on the teacher? 
The impracticality of teasing out how such 
intertwined variables affect the outcome 
leaves us to “maintain a gap” and, at least for 
the moment, tolerate our ignorance. Curric-
ulum design needs theory, art, design, and 
craft, but cannot quite achieve engineering.

The role of a vision of the discipline
« 7 » In §6, Monga says, “writing sys-

tematic textbooks with a large collection of 
repetitive exercises is easier than designing 
engaging activities for a whole curriculum.” 
That is absolutely correct and is, to me, what 
made the Wirtz curriculum – a paper-and-
pencil product published over a half-century 
ago – so incredibly remarkable. As I see it, 
what made that possible was a particular, 
and consistent, vision of mathematics (think-
ing, not just knowledge) and of curriculum. 
Without computers and with limited access 
to manipulatives – its teacher guide ex-
plains how (and why) to build a geoboard, 
not yet commercially available – it managed 
to make every student page (!) serve both 
practice and intellectual growth, with some 
element of curiosity-building surprise and 
cause to think. It was “conventional” in the 
sense of covering “standard” stuff, having a 
major publisher, and being widely used, even 
republished by the state of California after 
Britannica, its original publisher, stopped. 
Yet its structure and style were anything but 
conventional or standard. For one thing, it 
beautifully finessed the concept/skill battles. 
Concepts are constructed by abstracting 
commonality from variety; skills (whether 
in arithmetic, soccer, or piano) are built 
through (largely repetitive) practice. The 
Wirtz curriculum cleverly combined both. 
Consider just this one example of teaching 
a standard algorithm for multi-digit multi-
plication. On a page of forty-four problems 
(five from that page are shown in Figure 1) 
the accompanying text was spare:

“ Mother liked to make puzzles out of practice 
examples. Her rules were simple: Complete each 
example by writing the correct digit in each empty 
box. Write nothing outside the boxes.” (Wirtz et 
al. 1964a: 43)

3
x

2.

8

9
x

3.

2 …

6

1 3
34.

x

1 5 …

5

42.

x

8 5
2 5

1 2

35.

x

1
2

2

Figure 1 • Learning the multiplication algorithm inside out and backwards 
(from Wirtz et al. 1964a: 43).
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« 8 » The first few puzzles are one-digit 
by one-digit, each solvable just by knowing 
a multiplication fact, but look how different 
the mathematical thinking is – the mental 
search for the right fact – for puzzles 2 and 
3. Over the course of the page, students get 
a lot of practice with low-level skills (per-
haps rehearsing many facts before finding 
the ones they need) but each puzzle also en-
gages high-level thinking, touching number 
theory, estimation, structure within the dis-
tributive property, and more. Students are 
learning the multiplication algorithm inside 
out and backwards. Literally. Like a great 
composer’s études – focused practice, but 
also genuine music – this focused practice 
is genuine mathematics. The teacher guide 
also generalizes the idea.

“ ‘Gremlins’ are allies of arithmetic teachers. 
After school, they come in and erase part of the 
arithmetic work done on the chalkboard during 
the day. They do a most selective job of erasing. 
In the morning, when curiosity over the gremlins’ 
work has reached a healthy pitch, the teacher asks 
if the pupils can reconstruct what the gremlins 
erased.” (Wirtz et al. 1964b: 43)

« 9 » It then extends the idea by showing 
how much challenge and practice students 
get when they invent their own such puzzles 
with unique solutions – first performing a 
standard multi-digit multiplication (prac-
tice!) and then mimicking the gremlins and 
facing challenges like How many digits can I 
erase? and Which ones?

Curriculum vs. supplement
« 10 » Why do I spend well over 25% of 

the target article (and even more space here) 
on a paper-and-pencil school curriculum, 
when constructionism is so closely associ-
ated with Papert, computers, independent 
projects, and informal or out-of-school 
learning?

« 11 » To me, the crux is that while ma-
terials like Kangourou, the many clever tools 
that Sendova & Boytchev describe, and the 
EDC microworlds that my colleagues and I 
are designing (§§57–77) can be powerful re-
sources to support a high-quality curriculum, 
they are not, themselves, curriculum materi-
als. Scalability requires more. What the Wirtz 
texts show is that it is possible to build a for-
mal school text – not supplementary activi-

ties or after-school classes or maker spaces, 
all unquestionably valuable but optional 
– that is both mathematically deep and still 
usable (“scalable”) in schools. For construc-
tionism to effect change broadly in education, 
we must somehow be able to use its design 
ideas – ones that build students’ agency and 
let them explore and create while learning a 
heritage of ideas and knowledge – to accom-
modate a scalable/usable process.

« 12 » Framework-specification of cur-
ricula makes it even harder to create mate-
rials that let children be intellectually cre-
ative, even with computers and especially 
with only paper as a medium. As Monga says 
(§5), that is hard to achieve even for a group 
that has the time to collaborate, think, re-
flect, test, and revise – luxuries not available 
to classroom teachers. It may be the am-
biguity in my use of “curriculum” that led 
Monga then to state “I doubt a single teacher 
[…] could sustain the necessary creativity 
[…]” Of course! No teacher should have to 
figure out how to find that time and sustain 
that creativity. That is the very purpose of 
curriculum materials (and supplements). 
It is unreasonable to imagine that teachers 
would also be able to invent a sensible set 
of materials from scratch (required cover-
age, content accuracy, coherent order, clear 
focus, effective activity, sufficient practice, 
appealing craft, clear writing and graph-
ics), given a list of objectives, for even one 
subject, let alone for all of their subjects. 
(Astonishingly, at least in the United States, 
many districts are now expecting teachers 
to do exactly that!)

« 13 » The Wirtz curriculum illustrates 
something else. Monga (§6) writes “we all 
‘learned’ some things by a rote or strictly 
algorithmic approach […].” I assume that is 
connected with my statement (§11), “Solv-
ing a puzzle is different from working an 
exercise: the process is not rote or algorith-
mic […].” Monga is correct and could make 
an even stronger claim: Some things, like 
people’s names, are learned only by memo-
ry; they cannot be reasoned out, discovered, 
or learned “creatively.” But if his §6 is a re-
sponse specific to my §11 – as if to say we all 
learned some of our mathematics that way – 
that raises two concerns for me: the “all” and 
the “mathematics.” “We all” are the people 
who did thrive adequately in class. Others 
did not. To me, Monga’s statement reflects 

the perspective of the already “arrived” uni-
versity computer science professor and not 
the view of the path to arrival, seeing learn-
ing and teaching mathematics to young chil-
dren from the perspective of classrooms and 
teachers and psychologists (and even many 
mathematicians).

« 14 » Being a mathematician – or, for 
that matter, a good detective, a good diag-
nostician of the ailments of a car or person, 
or a good historian or paleontologist – re-
quires being able to figure out things that 
one has not already learned, by rote or in 
any other way, being able to select and apply 
heuristics, not just algorithms, and invent 
new heuristics and algorithms. If we do not 
devote some part of any curriculum to that 
kind of figuring out, we are leaving that im-
portant skill (yes, a skill) to chance, training 
children only on the rote and hoping some 
will figure out the rest on their own. We all 
did learn “some things by a rote or strictly 
algorithmic approach,” but that adequately 
served only some of us, not all. If the cur-
riculum designer’s vision foregrounds math-
ematical thinking (see, e.g., Cuoco, Golden-
berg & Mark 1996) as does Wirtz, we could 
all plausibly learn more. My intent in §11 
was not to reject a method (rote), but to add 
one. Puzzles are puzzling precisely because 
they can not be solved just by routine; they 
can incorporate needed practice (the “rote” 
part) but are not only practice. That combi-
nation is what made the Wirtz curriculum 
so brilliant.

Optimizing a programming 
language for children doing 
mathematics
« 15 » I was initially surprised by the no-

tion (Sendova & Boytchev’s abstract) of pro-
gramming being “‘repurposed’ to wrap the 
math in an attractive, yet educationally effec-
tive way.” As I read on, I understood better. 
Though, in §54, I attached the idea of using 
programming as a language for learning and 
expressing mathematics to Sendova, I never 
mentioned that “my” thinking about pro-
gramming that way derived directly from 
what I saw when I visited her and the Bul-
garian Academy of Sciences in 1989 to see 
her work. (This view of programming was, 
as I coded it in my head, their idea, which we 
did say in our proposal to the NSF.) At first, 
the notion of “wrapping the math” clashed 
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in my head with the notion of “expressing 
mathematics.”

« 16 » But when I understood Boytchev’s 
metaphor, it all became clearer. The many-
thousand-years-old evolution of mathemat-
ical thinking involved abstracting structure 
and pattern from observations and experi-
ments and later using the abstractions them-
selves as data for new knowledge and think-
ing. Classroom learning cannot start from 
scratch and rebuild the entire structure so, 
whatever else we do, we also depend heav-
ily on knowledge captured in words and 
symbols, “the way knowledge is developed 
and transmitted between generations,” as 
Monga put it (§11). The kernel of mathemat-
ics is wrapped in various languages – always 
one’s natural language and mathematical 
notation (my §53), and other abstractions 
(e.g., graphs, geometric diagrams), all with 
subtleties that clarify some meanings but 
obscure others. To get to the mathematics 
through programming necessarily involves 
unwrapping it, like making the program-
ming somehow transparent. My (§56) “ex-
pressiveness of a ‘live’ language,” meant no-
tation on a computer (in, say, Snap!) which 
can be run, giving us feedback on what it 
says. This is like how natural language is 
learned and how learning occurs through 
using natural language: we dialogue; we say 
something, and someone reacts, so we get to 
see what effect we have created. By contrast, 
notation on paper in conventional algebraic 
form just sits there, correct or incorrect, and 
gives no feedback. Without “rerunning” the 
code mentally, we may not find out what 
those symbols said.

« 17 » The computer language one 
chooses can certainly matter. In our pro-
posal to the NSF to treat programming as 
a language for young children to express 
and explore their growing mathematical 
ideas, we proposed to use Scratch, familiar 
in increasingly many elementary schools 
and massively successful in attracting chil-
dren to programming. As we worked, it ap-
peared that Scratch would not adequately 
serve our purposes – children’s mathematics, 
not introduction to coding – which is why 
we switched to Snap!. The two languages 
look very much the same, so teachers (and 
children) with prior experience in Scratch 
would have no trouble switching over, but 
Snap! lets students build their own mathe-

matical functions – code that takes an input 
and returns an output – and compose those 
to build yet others, not currently possible in 
Scratch. In Snap!, functions are first-class 
objects, so children can map a function 
they create over a list. Some of what we are 
already doing with second-graders (e.g., 
providing the combine steps block shown in 
Figure 22 of my article, or enabling them to 
create blocks like the pink +2 block shown 
in §70) are not possible in Scratch.

« 18 » This is neither promotion of Snap! 
nor criticism of Scratch – they are optimized 
for different purposes, which is one reason 
why there are different computer languages. 
The C and Lisp families are optimized for 
different purposes; both remain essential. 
Nor is this a treatise on comparative com-
puter languages expounding on Snap!’s fea-
tures. However, knowing what a language 
is matters when evaluating how it is used. 
I agree with Monga that “If programming is 
supposed to be a key mental tool to express 
mathematical ideas […],” then “a program-
ming tool with a limited potential of ex-
pression, based only on simple sequences 
of predefined steps [is] too limited even at 
[second grade]” (Restructured from §7). Yet 
expressiveness and form are not the same: 
the misperception that blocks-based means 
unsophisticated is so widespread that I feel 
compelled to address it.

« 19 » Differences in computer languag-
es almost certainly do affect the metaphors 
and models that students build in their 
heads – instrumental genesis – and it might 
well be that first languages have a particular-
ly strong influence. Therefore, as Monga says 
in §17, we should “be careful not to restrict 
unnecessarily the expressivity of the pro-
gramming tools we give to pupils.” Working 
in a low-level language, one that is closer to 
the hardware and operating system architec-
ture (e.g., C++), draws attention to different 
things than does working in a high-level 
language (e.g., Logo). They satisfy different 
needs and each is optimized for its purpose. 
Both are text. This issue is not about blocks 
vs. text; form is not function.

« 20 » I may be misunderstanding 
Monga’s intent in §§10f, but he seems to 
say that the metaphor of building blocks is 
somehow less linguistic, “screen[ing] off the 
epistemic power of language.” I see it differ-
ently. The atoms of a language are, more or 

less (depending somewhat on the language), 
its words. The atoms of a writing system may 
be words, too – logograms as in Han Chi-
nese characters or a block-based language 
– or may be tinier elements, syllabic or al-
phabetic, from which the written words are 
constructed as molecules. None of these 
variations bear on sophistication. When 
university students take computer science, 
they will need to know that computer lan-
guages, like natural languages, can differ not 
just in abstraction level and in vocabulary 
and local syntactic details, but in structure 
and metaphor (think imperative vs. func-
tional or compare Scheme and Prolog); 
graduate students in linguistics similarly 
learn that natural languages differ not just in 
low-level detail but in surprisingly different 
syntactical constructs and semantic spaces.

« 21 » A block language, like a special-
purpose text-based language, can be very 
limited, but it does not have to be. Vocabu-
lary size and vocabulary power are indepen-
dent attributes, and independent from the 
form in which the vocabulary is presented. 
Monga is right (§11) that “thoughts made by 
words and rich grammatical structures are 
closer to the way knowledge is developed 
and transmitted between generations.” But 
words do not imply alphabet: think Han 
characters or a sign language or, for that mat-
ter, speech. Children need words and rich 
structures that admit to extensibility and 
offer powerful metaphors. And, as children 
develop more complex ideas to express, they 
need more vocabulary and richer structure. 
Just as learning one’s native language begins 
simply, a mathematically expressive lan-
guage for children can begin simply, as long 
as it has both fidelity to mathematics and the 
extensibility to serve well as the child’s ideas 
grow. Nobody should be distracted by semi-
colons in writing English or computer code 
until (if ever) they are needed. And educa-
tors should not be distracted by whether the 
tokens of the language – the words that con-
vey meaning – are typed or dragged.

« 22 » Giving children limited tools will 
restrict what they can express and, potential-
ly, narrow how they learn to think. Giving 
them distracting or cumbersome tools is also 
restrictive. The optimal solution would seem 
to be some flavor of high-level language with 
a robust starting vocabulary, flexible (and 
extensible) data structures, functional pro-
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gramming capability, recursion, higher-or-
der functions, low syntactic distraction, and 
a way to tailor the environment so students 
encounter new power only as they need and 
can use it, without having to sift past it or 
learn everything before they start. That could 
certainly be a text-based language like Logo, 
but typing is hard work and prone to error. 
Why not provide the same extensibility as 
Logo (or Python or JavaScript or any good 
text-based language) but present the primi-
tive vocabulary of that language in draggable 
blocks that can flexibly create the full range 
of new vocabulary and structure?
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