
319

 http://constructivist.info/14/3/319.goldenberg

Constructionism

Problem Posing and Creativity
in Elementary-School Mathematics
E. Paul Goldenberg • Education Development Center (EDC), USA • pgoldenberg/at/edc.org

> Context • In 1972, Papert emphasized that “[t]he important difference between the work of a child in an elementary
mathematics class and […]a mathematician” is “not in the subject matter […]but in the fact that the mathematician is
creatively engaged […]” Along with creative, Papert kept saying children should be engaged in projects rather than prob-
lems. A project is not just a large problem, but involves sustained, active engagement, like children’s play. For Papert,
in 1972, computer programming suggested a flexible construction medium, ideal for a research-lab/playground tuned
to mathematics for children. In 1964, without computers, Sawyer also articulated research-playgrounds for children,
rooted in conventional content, in which children would learn to act and think like mathematicians. > Problem • This
target article addresses the issue of designing a formal curriculum that helps children develop the mathematical hab-
its of mind of creative tinkering, puzzling through, and perseverance. I connect the two mathematicians/educators
– Papert and Sawyer – tackling three questions: How do genuine puzzles differ from school problems? What is useful
about children creating puzzles? How might puzzles, problem-posing and programming-centric playgrounds enhance
mathematical learning? > Method • This analysis is based on forty years of curriculum analysis, comparison and con-
struction, and on research with children. > Results • In physical playgrounds most children choose challenge. Papert’s
ideas tapped that try-something-new and puzzle-it-out-for-yourself spirit, the drive for challenge. Children can learn
a lot in such an environment, but what (and how much) they learn is left to chance. Formal educational systems set
standards and structures to ensure some common learning and some equity across students. For a curriculum to tap
curiosity and the drive for challenge, it needs both the playful looseness that invites exploration and the structure
that organizes content. > Implications • My aim is to provide support for mathematics teachers and curriculum de-
signers to design or teach in accord with their constructivist thinking. > Constructivist content • This article enriches
Papert’s constructionism with curricular ideas from Sawyer and from the work that I and my colleagues have done.
> Key words • Problem posing, puzzles, mathematics, algebra, computer programming.

« 1 » Seymour Papert’s early work and
the origin of constructionism were largely
outside of the school setting. The current
school environment is even more rigidly
constrained than it used to be. The ques-
tion is, Is there any hope for this kind of con-
structionist thinking and teaching in a school
setting, not as a pull-out for well-resourced
schools and with the best of their students, but
as part of the regular program? This target ar-
ticle shares some ideas that, to me, exhibit
the essential elements of constructionism
and could easily be core to even moderately
conservative school practice.

« 2 » I, too, love playing with children
outside the classroom. There is more free-
dom and it is easier. But we all know that
if we are serious about touching many chil-
dren’s lives, we need a way to find them
where they are. They are in school. Reaching
them there is possible.

Children choose challenge

« 3 » Not all children and not all the
time, but children do mostly choose chal-
lenge. Children are often pretty adventur-
ous on the playground. Tiny ones climb
the monkey bars higher than their parents
are totally happy with. When climbing gets
too easy, they hang upside down. Children
walk on five-inch-wide retaining walls two
to three feet above sidewalk level when they
get a chance; they hop across the street on
one foot; when bicycle riding feels easy, they
try letting go of the handlebars. Even with
games, they up the ante if the game feels
too easy, changing rules fluidly to add extra
challenge.

« 4 » For a toddler, there’s enough chal-
lenge fitting the boat-shaped piece into the
boat-shaped hole and the moon-shaped
piece into the moon-shaped hole, but when

that’s no longer a challenge, children seek
more. Kindergarteners like fitting together
the two-dozen jigsaw puzzle pieces of a
large picture of a dinosaur. And when that
gets too easy, some try putting the pieces
together face down, some try jigsaw puzzles
with smaller and more numerous pieces,
and some just move on to totally different
activities.

« 5 » Children also put effort into fig-
uring out how things work. Laura Schulz
and Elizabeth Bonawitz (2007) showed pre-
schoolers a box with two levers and two dif-
ferent toys that popped up when the levers
were pressed. One group of children were
shown that each lever caused one toy to pop
up. The other group saw only that when both
levers were pressed simultaneously, both
toys popped up. The first group’s informa-
tion was complete and unambiguous, with
nothing left to figure out. The second group’s

http://constructivist.info

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

320

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

information was incomplete: either lever
might have controlled both toys, with the
other doing the same, or nothing, or raising
just one toy if pressed by itself; or the two
levers might be totally independent, one for
each toy. When the children were then given
the toy to play with (or ignore) on their own,
children in that second group played longer,
spontaneously exploring to puzzle out the
cause-and-effect relationship. It is tempting
to relate the first group’s experience to the
situation children often experience in school
mathematics, where common pedagogy (at
least in the US and UK) shows exactly how
each thing is done, leaving no evidence that
there is anything to figure out, and taking lit-
tle advantage of children’s built-in curiosity.

« 6 » Children also love riddles – chal-
lenges to logic, interpretation or perception.
And just as they spontaneously add chal-
lenge to their playground activities or jigsaw
puzzles, they will add to their repertoire of
riddles and jokes by making up their own,
sometimes creations that they, at their age,
find funny (illogical) because the challenge
“works” for them, and that we adults find
simply ludicrous (illogical) because the
challenge no longer works.

« 7 » The common feature is the chal-
lenge. When it is not there, children are
bored. When they are bored, they invent
challenge. In school, that mischievous in-
ventiveness can be to the dismay of their
teachers, whose response may dismay the
children, but even that will not stop the chil-
dren’s drive for the challenge.

Why puzzles?

« 8 » Kittens stalk and pounce to make
their hunting skills sharp, and they scratch
to keep their claws sharp. That is because
sharp claws and hunting skills are among
the particular adaptations that make their
species successful. Our species’ special ad-
aptation is not sharp claws and pouncing
but a mind that lets us adapt to nearly any
environment, which is how we wound up
populating city and farm, blazing heat and
frigid cold, arid desert and tropical jungle.
Keeping our minds sharp is what makes our
species successful. Evolution built a mecha-
nism to nudge creatures to repeat those ac-
tions that, for their species, are most use-

ful. Humans experience it as pleasure. We
like the feeling we get when we stretch our
minds, so we seek it out.

« 9 » Having evolved to adapt to such
varied environments means we start with less
“built-in knowledge” about which features
will matter most for survival. We must fig-
ure that out. That has implications for learn-
ing. As children, we watch social behavior
(Whom should we copy, stay near, avoid?),
animals (Are they food, playmates or dan-
ger?), artifacts (How do they work?), math
lessons (Who knows? Maybe they are im-
portant) and everything else. Little children
listen closely to the words others use, and re-
peat them, whether or not they relate to the
current activity. In our species, it is adaptive
for the young to be distractible and not to fo-
cus too narrowly; some “attention deficit” is
natural, and a built-in asset for a child.

« 10 » For adults who must focus to
“earn a living,” whether that is by blow-dart-
ing the rabbit (while avoiding the tiger) or by
generating research papers or teaching chil-
dren, allowing their attention to wander is
not as adaptive. But adults still have to keep
their minds sharp. Adults argue about ideas
– politics, religion, what to wear, business
plans, the lives of others, predicting which
team will win or what their best strategy is
– even when the practical value of the argu-
ment is near zero. It is a mental workout.1
Mental challenge is not just for academics;
all people whose minds are not already fully
occupied finding food or avoiding danger
seek ways to keep their mind busy. Mental
challenges for adults are sold not just in aca-
demic bookstores but also in supermarkets;
puzzles appear in newspapers and in air-
plane magazines. Boredom is painful; en-
forced boredom is torture.

« 11 » Several things distinguish purely
recreational “puzzles” from standard school
problems. The most obvious is that they are
optional. But tasks designed for educational
purposes – non-optional and non-recre-
ational – can also be designed in ways that
tap the same drive that moves people to take

1 | Children also practice intellectual argu-
ment, debating rules of games, veracity of claims,
or meanings of words and ideas. Those arguments
share many characteristics with play even when,
to our adult eyes, they seem to be getting in the
way of the play.

on optional puzzles, a drive Marcel Danesi
(2002) refers to as “the puzzle instinct.” Tasks
that generate surprise can stimulate curios-
ity and the eagerness to satisfy that curiosity
by exploring more. Puzzles require puzzling:
searching, figuring out what to do, and a bit
of time. A crossword puzzle provides some
hundred clues. Even if the individual clues
are not obscure and “tricky,” it is not imme-
diately obvious which clue to use first. One
searches for a place to start, tries an experi-
ment, confirms or rejects the word, and then
moves on. The content is not mathematical,
but the way of thinking – that search for an
entry point and for data that supports or
weakens a conjecture – is very close to one
element of mathematical practice we want
students to develop. (And, of course, tasks
that do have mathematical content can also
offer that experience of genuine puzzling and
surprise.) Solving a puzzle is different from
working an exercise: the process is not rote
or algorithmic, not just the application of
some technique one just learned.

Puzzles and surprise
in mathematics learning
« 12 » In 1964, Walter Sawyer (2003)

seeded the ideas for a wonderful textbook
series for primary-school mathematics
(Wirtz et al. 1964) and for our own cur-
riculum materials (see, e.g., Goldenberg &
Shteingold 2007a, 2007b). He took a very
algebraic approach to teaching elementary
arithmetic, with a major emphasis on play
and surprise. On the surface, the content
was exactly what one expects for the grade
level but with a twist that included research,
puzzles for children to figure out, all fore-
shadowing the algebra that children would
learn later.

« 13 » For example, as a way to give
seven-year-olds practice with addition and
subtraction they start with a piece of math-
ematical research. A child is asked to sug-
gest some addition equation like 4 + 2 = 6
or any other, and the teacher would write
it on the board. Another child is asked to
suggest a new equation, e.g., 1 + 2 = 3, which
the teacher carefully lines up directly under-
neath the first. Then the teacher has the chil-
dren add vertically, displaying the results as
in Figure 1 (left).

http://constructivist.info
http://constructivist.info

321

Problem Posing and Creativity Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

« 14 » Do these three new numbers
make a mathematically correct addition
equation? The teacher completes the bottom
row of numbers to read 5 + 4 =? 9. Surprise!

« 15 » Will this always happen, or did
they just get lucky? Children are given the
challenge of finding a pair of addition sen-
tences that do not work (Figure 1, right).
Seven-year-olds are sure they can find some
and set off busily, getting lots of practice.

« 16 » Of course, they will find some
(they think) and report them excitedly, but
the preponderance of cases that do work will
get even seven-year-olds to doubt the coun-
terexamples and check to see if they have
made a mistake. This research is hardly a
project in Papert’s sense – sustained, active
engagement, like children’s play, in a pro-
grammable research-lab/playground. This
tiny research project may not even last a full
classroom period, but it does generate curi-
osity, the creative engagement that Papert re-
ferred to as the experience of the mathema-
tician. Note also that it is not just a school
exercise “gamified” but a mathematical result
that is surprising and generates curiosity.

« 17 » Their research convinces them of
a result, but if we do not leave it as magic
and instead help expose the logic inside
the puzzle, children get even more excited.
They have a tool they can and do use, first
to figure out for themselves why the puzzle
works and then to invent new puzzles for
themselves and their friends! Exposing the
logic involves reminding children of reason-
ing they developed in Kindergarten and first
grade. Given a collection of buttons differ-
ing by two attributes, color and size, kinder-
garten children naturally sort, though some-
times their sorting is idiosyncratic – two
large buttons and a small one, for example,
to make a “family.” They learn to respond to
“show me a small button” and “how many
small buttons do you have?” And they can
learn to respond to “show me a large grey

button” and “how many small blue buttons
do you have?” After sorting by a single at-
tribute (Figure 2, left), they can learn to sort
by two attributes (Figure 2, right).

« 18 » Now, when we ask how many
small buttons and how many large, we are
summarizing the rows, and we can write
that summary (Figure 3, left). And we can do
the same for the columns, summarizing the
number of buttons by color (Figure 3, right).

« 19 » Once children grasp and can use
cardinality, it is clear that the number of blue
and grey must be the same as the number of
large and small – either way, it is all the but-
tons. Second-graade students comfortably
replace buttons with numbers (Figure 4)
and then use that structure as part of their
reasoning.

« 20 » Reading across (Figure 4, right),
children see 4 + 2 = 6 and 3 + 1 = 4; adding
down the columns, they get 7, 3, and 10,
which must make a correct addition state-
ment.

« 21 » Subtracting down the columns
is not always possible for seven-year-olds –
depending on the situation, it might require
negative numbers, and the meaning changes,
too (it does not yet make sense to subtract
the number of large buttons from the num-
ber of small ones) – but with numbers that
they can subtract (as is the case in Figure 4,
right), the arithmetic still works and produc-
es a mathematically correct addition state-

ment. Subtracting to see how many more
small buttons than large, we get 1 + 1 = 2. And
that exact same logic will be essential in alge-
bra a few years later! (Figure 5)

« 22 » The format is not just a school ar-
tifact; it is the structure of any spreadsheet
that subtotals the columns and rows and has
a grand total. Robert Wirtz et al. (1964) used
this format as a puzzle. (Which cell in Fig-
ure 6 might you fill in first?)

« 23 » They also used it as a route into
multi-digit addition and subtraction (Fig-
ure 7).

+
+

=
=

+
+

+5

4
1

4

2
2

9

6
3

=
=

=
?

Figure 1 • Left: “Adding” two equations.
Right: A blank for children to experi-

ment with.
large

small

blue gray

large

small

Figure 2 • Sorting buttons in kindergarten.

blue

7

gray

3

large

small 6

4

Figure 3 • Recording data from the sorting.

blue grayblue

large

small 6

4

107

4

3

3

2

1large

small

7

gray

3

6

4

10

Figure 4 • Buttons (left) replaced by the
number of buttons (right).

=
=

=
?

+
+

+3x

5x
2x

0

3y
3y

12

23
11

Subtracting

Figure 5 • Algebra subtracting equations.

6 11

18

3

Figure 6 • A puzzle based on a spreadsheet
with subtotals and grand total.

37

82

40

737

5

7

45

Figure 7 • The same arithmetic presented
(left) as an addition puzzle 45 + 37, with the
grey square as the sum, and (right) as a sub-
traction puzzle 82 – 37, with the grey square
as the difference.

http://constructivist.info
http://constructivist.info

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

322

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

« 24 » For nine- or ten-year-olds, this
structure also models the multiplication
algorithm. Instead of color and size labels,
we label the width and height of the col-
umns and rows, and imagine cells filled with
unit squares instead of buttons. How many
squares are in the four regions? In the most
concrete image, everything is to scale (Fig-
ure 8, left).

« 25 » With a smaller array, say 3 × 4, we
can see why multiplication gives the answer
and we can count to check. But with num-
bers like 37 × 26, we certainly do not want to
count! Instead, we use an abstraction (Fig-
ure 8, right), ignoring scale, but maintain-
ing a sense of the logic of multi-digit multi-
plication, not a set of memorized steps that
often wind up feeling arbitrary. Of course,
the steps involved in this logical model map
perfectly onto the abbreviated notation of-
ten taught in school, and fully explain that
notation. Moreover, it is worth delaying the
abbreviated notation until children are so
secure in the logic of the array model that
they can easily extend it to three-digit mul-
tiplication, because exactly this method –
four separate multiplications and only then
a possible summing up – will be required
when the students study algebra.

« 26 » Sawyer suggested other ways that
even very young elementary content like
addition and subtraction of small numbers
could be learned or practiced in a puzzle-
like context that both builds curiosity and
foreshadows later ideas and methods. Fig-
ure 9, for example, shows what, in standard
worksheets, might be presented as 16 unre-
lated addition/subtraction practice exercises
for seven-year-olds, but structured here in a
way that adds a bit of intellectual challenge
– how-do-I-do-this? – and foreshadows sys-
tems of equations that the children will meet
several years later.

« 27 » Again, it is not a “project” in Pa-
pert’s sense, and not “creative” in the most
familiarly used sense of that word, but espe-
cially the last two columns pull for children
to be mathematically creative.

« 28 » One of the most powerful intro-
ductions to algebra that I have seen is what
Wirtz et al. (1964) called Think-of-a-Num-
ber tricks. For example: “Think of a number.
(Yes, you! Please think of a number.) Add 3.
Double the result. Subtract 4. Cut that result
in half. Subtract your original number. Aha!
I can read your mind! You got 1 at the end!”

« 29 » For nine- or ten-year-olds, this
is wonderful magic. They want to do it
over and over, but also want to know how it
works. I say that I picture the secret number
as that many marbles (or grapes or whatev-
er), tucked in a bag or bucket where
we cannot see them – only the secret keeper
knows the number inside. When I give the
instruction “add 3,” I know about those
marbles, so I draw them outside the bag. I
ask the children what the next instruction
is (they almost always remember) and what
the picture should be like (they almost al-
ways say “two bags and six marbles”). Then
I continue, each time asking the children to
describe the next picture. At the end, “sub-
tract your original number” gets rid of the
bag. So, the number of marbles in it does not
matter! There is one marble left, and we can
see it!

« 30 » Even after the usual huge smile
and the cry “I get it!!,” seeing it once is not
enough. The understanding evaporates until
children see the generality, not just the way
this particular trick worked. To create that
abstraction for themselves, children need
research time: practice drawing pictures to
match instructions, applying instructions to
specific numbers, and variations on the trick
from which to generalize and learn to invent
their own tricks.

« 31 » They also need chances to study
the trick inside out and backwards (Fig-
ure 10), starting, for example, with the 16
that Suri had in mind after the instruction
“double that” and figuring out what secret
number she must have started with. To do
that, a child might note that the picture cor-
responding to Suri’s 16 shows six of those
marbles, so ten marbles must be hidden
in the two bags. Suri’s secret number – the
marbles in one bag – must have been 5.

« 32 » I have recently been introducing
a new crop of eight- and nine-year-olds to
algebra this way and told them that they
would soon know how to invent new tricks
of their own. After two days of playing with
the puzzle, Lucy said “I really get it, but I
still don’t know how to make up my own.”
So, we played. I said “OK, I’ve thought of a
number” and I drew . “Just make up one
instruction, anything you like, and I’ll draw
the next picture.” She said “add 5?” I said
“OK,” drew , and asked “What
next?” She said “double that?,” still with the
question in her voice. I said “whatever you’d
like me to do… Is that what you want me to
do?” She nodded and I said “you draw the
picture.” She drew two buckets and 10 dots.
She then told me to subtract 2 (no ques-
tion in her voice, and she drew the picture),
then subtract 7 (she drew the picture). That
change in tone – no question in her voice
– was because she now understood some-
thing new, not just about the mathematics
of this trick but about mathematics, itself.
She could make up a rule, any rule, and it
was then up to her to figure out its implica-
tions. That is so much like watching a child
program, see the effect, decide whether that
effect is desired or not, and then decide what
to do next.

« 33 » I asked, “OK, what can you do in
order to know my number?” Long pause.
Then Lucy commanded “subtract your orig-

600

180

140

42

20

6

30 7

600 14020

6

30 7

180

Figure 8 • An array model of multiplication.
Left: proportional to scale. Right: abstracted.

+

9

4

10

5

16

8

20

40

20

6

26

8–

4

3

8

2 7

0

29

20

Figure 9 • A practice exercise for 2nd grade, foreshadowing systems
of equations (after Wirtz et al. 1964).

http://constructivist.info
http://constructivist.info

323

Problem Posing and Creativity Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

inal number” (and drew the picture). After
another pause, she said “Oh!! Subtract your
original number again!” Her smug smile
showed clearly that she knew what she had
done but I wanted to check, so I prompted
her to “read my mind.” Instantly, but with
excitement and what also sounded like sur-
prise in her voice, she said “Oh! One! You
got one!” as if understanding the trick for
the first time all over again. The joy of “get-
ting it” is far more magical than any grade,
praise or prize could be.

« 34 » These are 5- to 15-minute events.
By the end of a week of them, instead of
drawing the pictures that the children de-
scribe, we write the words with which they
describe the pictures. “Two bags and six
marbles” is a lot to write, so we abbreviate
it: 2b + 6. No discussion of variables; no ex-
plaining about letters standing for numbers;
2b + 6 is terse, but represents the language
the children themselves used, and they fully
understand it. For now, that’s enough. Lat-
er, when they formalize algebra, the bag or
bucket image is useful to return to: a vari-
able is a container for a value.

« 35 » Containing a value (or being a
pointer to it) is the programmer’s image; rep-
resenting a value is the mathematician’s im-
age. The underlying idea common to both
images is that a value can be referred to by
a name and that this abstraction is useful. In
practice, nearly all children love the think-
of-a-number tricks, so they become a natu-
ral, appealing and compelling way to acquire
that value-naming idea. Part of the power of
the “trick” is that it is faithful to the math-
ematics, even though it is limited.2 But part
of its power, I am sure, is what Schulz and
Bonawitz (2007) saw: children play longer
and more curiously when there’s something
they do not understand and they believe that
they can figure it out.3

2 | This imagery does not represent “divide
by 2” well unless the numbers of bags and marbles
are both even. The imagery is adaptable to “nega-
tive marbles,” but frankly awkward. So, we need
to be clear that the imagery is not the goal, not a
“new method” for algebra. But it is an extremely
effective entry to algebra.

3 | This qualification is important. Nobody
– no corporation, no person – puts time/money/
effort into an endeavor that they believe has no
chance of success. Students who have been con-

« 36 » This was not a classroom assign-
ment. The children did not have to do this
and would not be tested on it. But they put
effort and attention into the think-of-a-
number trick because they want to know
how it works. The intensity of Lucy’s inter-
est, even readily admitting what she could
not yet do and asking for help doing it, was
because there was a genuine mystery left to
solve – one that she saw as hard – but she
was so tantalizingly close that she was con-
vinced she could reach that goal.

Why have students invent
puzzles?
« 37 » Four reasons come immediately

to mind; perhaps there are more.
« 38 » First, the construction of a work-

able puzzle is a creative act, making the
student a creator and not just a consumer
of mathematics. We who call ourselves con-
structionists easily accept making as a good

vinced they are “no good at math” often do not
put effort into study that we believe would make
them better. But they do not share that belief, so
from their perspective, it is wiser to aim their ef-
forts in a direction that seems more likely to pay
off. That is an adaptive, economical choice. That
is why it is so important to show (not tell) them
that they are capable by hooking their interest on
something they perceive as hard but attainable.

thing, but it is useful to say why. What you
make is yours; creating gives ownership.
Mathematics is often perceived – except by
mathematicians – as the antithesis of cre-
ativity, a subject in which rules rule and we
obey. It is very possible to learn mathemati-
cal content that way, and some people like
that order and simplicity. But mathematical
thinking cannot work that way because gen-
uinely new problems could then never be
solved. For new problems, one must create
new ideas and approaches. Young students’
mathematical creativity cannot be at the
leading edge of mathematics, but it can be at
their leading edge. Puzzles are not the only
opportunities for students to be creative in
mathematics but they are good ones, espe-
cially for younger students.

« 39 » Second, constructing a good
sharable puzzle is a balancing act – easy
enough to be solvable and hard enough to
be fun. To be solvable, a puzzle must also
be well specified – enough clues to derive a
unique solution (or a limited class of solu-
tions) – without having so many clues that
only the arithmetic is left. Determining
when one has given enough clues to derive a
solution is quite a challenge.4

4 | This is especially the case when creating
a good MysteryGrid puzzle or Who Am I puzzle,
not described here, but part of the SolveMe suite
of puzzles mentioned in §42.

Some cells are already filled. Fill in the rest.

Think of a number. 40
Add 3.

Double that.

Subtract 4.

Divide by 2.

Subtract your original number.

I can read your mind! You got ____!!!

The instructions you give. Pictures Orli AdamSuriNaomi

16
10

Imagine your

number is

hidden in

the bag.

Figure 10 • Using bags and marbles to introduce 3rd graders to algebraic notation and solving
equations. (Idea from Wirtz et al. 1964, reworked for 3rd grade based on Mark et al. 2014 and
Goldenberg et al. 2015).

http://constructivist.info
http://constructivist.info

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

324

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

« 40 » That challenge, and also the act
of being a creator, may be part of why con-
struction of a sharable puzzle appeals to
children, but the appeal is yet a third reason
to have children create.

« 41 » And fourth, construction of
a sharable object helps reveal the child’s
thinking to both the child and teacher, sup-
porting refinement of that thinking, and
discussion and analysis.

« 42 » SolveMe.edc.org is a puzzle world
with three kinds of puzzles aimed at devel-
oping algebraic reasoning. Each puzzle type
also lets students create their own puzzles
and share them on line. The Mobiles app
collection begins with relatively elementary
puzzles like the ones in Figure 11, and even
simpler ones for complete beginners.

« 43 » The mobile’s total weight might
be given (Figure 11, left) and players must
figure out how much the blue red objects
must weigh in order for this mobile to bal-
ance. Or (Figure 11, right), no total weight

might be given, but the weight of one of the
hanging objects might be specified. Again,
the player must puzzle out the weights of
the other objects.

« 44 » Players often just work these out
in their heads, but the app offers other op-
tions: they can scrawl annotations on the
screen (Figure 12).

« 45 » They can also create equations
by dragging off a copy of a horizontal beam

 = , or the entire mobile 12 = 2 + 2 , and
substitute these into other equations (or
the mobile) to derive new information, like
12 = 4 . The app also lets them factor 2 out
of equations like 12 = 2 + 2 to derive
new equations 6 = + and to drag a com-
mon element out of both sides of an equa-
tion like 4 = 2 + to get 3 = 2 . Mara
Otten et al. (2017) describe how eleven-
year-olds used explicitly algebraic correct
reasoning in the context of informal nota-
tion and manipulations of a physical hang-
ing mobile.

« 46 » The mobile puzzles are essential-
ly systems of equations. Some students are
intrigued that they can get those equations
and see what those equations mean. In class,
that is an advantage, but informally, even
the students who like that they can get equa-
tions mostly do not work with the equations,
instead inventing informal methods equiva-
lent to the formal manipulations that alge-
bra classes teach and name. They also see,
early on, that the “weights” can be fractional
and even negative.

« 47 » Some of the puzzles are quite
challenging, like the ones in Figure 13; with-
out being required to, students persevere
because they are sure they can solve the
puzzles if they keep at it.

« 48 » As I had said, we felt it impor-
tant to provide a tool with which students
could create their own puzzles and even
share them with friends or with the entire
SolveMe community. The sheer variety of
users’ contributions is fascinating. Some are

Figure 11 • Two relatively simple mobile puzzles. Figure 12 • Annotating a mobile puzzle.

Figure 13 • Two mobile puzzles at a more advanced level.

http://constructivist.info
http://constructivist.info

325

Problem Posing and Creativity Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

genuine puzzles, like those shown above.
Others seem to be intended more as works
of art, like the ones in Figure 14.

« 49 » Tracy Manousaridis (personal
communication 2018) regularly encour-
ages students in grades 2 and 3 to create
their own puzzles as posters after solving
some online. Part of her goal is, of course,
the ownership that comes from building a
puzzle. But it is also clear that the task natu-
rally leads children to work at the frontier of
their ability, partly because they take special
pride in pushing (and displaying) what they
can do.

« 50 » The nine-year-old who created
the puzzles shown in Figure 15 was clearly
proud of the arithmetic she did but espe-
cially proud of having created a puzzle that
required such fancy arithmetic. The puzzle,
not just the artwork on the poster, is a high-
ly personal and creative act. This child is
what Papert (1972) described as “the math-
ematician […] creatively engaged.”

Programming as a
language for learning
mathematics
« 51 » The examples and contexts de-

scribed above have been very far from the
programming-centric proposal that Pap-
ert made in 1972. But they are well in line
with the mathematical creativity, explora-
tion, and research projects that he regarded
as doing mathematics rather than learning
about it – solving genuine puzzles and cre-
ating one’s own versus learning mathemati-
cal facts and solving exercises created by
others. While nobody would claim that pro-
gramming is the only (or even always best)
venue for creative expression and explora-
tion in mathematics, I and others believe it
can be an enormous help if it can become a
language for and a natural part of learning
mathematics. For it to be “a natural part,” it
must develop along with the mathematics,
growing over time as the mathematics does,
and used in ways that support the mathe-
matics and do not compete with it. That is,
it must not be, nor even seem to be, a sepa-
rate venture – fun stuff but disconnected.
It must not be overhead or distraction. If
that can be achieved, then the flexibility and
expressive ability of programming can give

it a central role in children’s mathematical
learning and creativity.5

« 52 » Richard Noss and Celia Hoyles
focused especially on that expressive ability:

“ Maths is difficult in part because of the language
in which it is expressed. Can we find a different
language – and set of ideas and approaches – that
is more open, more accessible and more learnable.
And can we find it without sacrificing what makes

5 | It is important to emphasize that pro-
gramming, here, is not promoted as part of the
current enthusiasm about “coding for all,” which
is often associated with claims about viability for
the work force. The ability to talk to machines
the way programmers (currently) do may turn
out to have some job value but smacks of a du-
bious promise. It feels similar to the claim that
one cannot survive without mathematics in the
21st century, a mantra that everyone is happy to
repeat even while knowing so many people who
unashamedly say they are “not good at math” and
yet are surviving quite well.

mathematics work? Our tentative answer is ‘yes’ –
the language of programming might, if we design
it right, be just such a language.”6

« 53 » Mathematics needs three lan-
guages. Two are already used universally
in school: natural language for semantics
(context, explanation, and some of the log-
ic) and conventional arithmetic (algebraic)
notation. Both are necessary but, if used in-
appropriately, both can also get in the way.
For young children, mathematical notation
is best used as a clean and concise way to
record ideas that the children already un-
derstand well, not as the entry point to new
ideas, as appears to be nearly universal prac-
tice.7 Here is why. Recall that the third grad-

6 | http://www.ucl.ac.uk/ioe/research/proj-
ects/scratchmaths

7 | This parallels teachers’ understanding
that writing is a record of language, and that un-
derstanding the meaning of the language comes
first.

Figure 14 • Two mobile “puzzles” invented by users, apparently intended only as art.

Figure 15 • Photographs of a mobile puzzle invented by a nine-year-old to challenge
her classmates to use fractions.

http://constructivist.info
http://constructivist.info
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

326

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

ers knew intuitively that doubling
produced . Moreover,
six-year-olds, when asked verbally (not in
writing) what five eighths plus five eighths
might be, are happy to respond “ten ayfs”8
and then, perhaps, even ask “what’s an
ayf?” (Goldenberg & Carter 2018). They
never answer ten sixteenths. The distribu-
tive property is built in to our logic early.
But when the term “distributive property” is
introduced in third grade (in the US, that is
a commonly mandated content standard), it
is often taught with a written string like 8 × 7
= 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56
that is opaque and daunting to a beginner. It
is likely that, despite your own mathemati-
cal literacy, knowledge, and adult cognition,
even you zipped past the string of symbols
without reading closely enough to see if it
was typed correctly. Processing such a string
of symbols takes focus and effort, so it can-
not be the optimal way to introduce the dis-
tributive property to an eight-year-old. Too
much cognitive space is taken up just de-
coding the long string; not enough is left for
thinking about the idea.

« 54 » But part of learning to reason
mathematically involves focusing on the
steps one takes to solve a problem. Neither
natural language nor mathematical notation
is particularly good at expressing process
or algorithm. That is what a good program-
ming language can provide. Also, unlike a
string of symbols or words that sits on pa-
per, correct or incorrect, and gives no feed-
back without the reader (re)reading and (re)
processing it mentally (or relying on outside
authority to validate it) a programming lan-
guage is a notation that can be run and will
give direct and clear feedback. Papert’s idea
was that programming offered new contexts
and opportunities for engaging in math-
ematics. This notion of programming as a
language for learning and expressing math-
ematics is a bit different (see, e.g., Sendova &
Sendov 1994; Sendova 2013) and is explicit-
ly stated as a rationale behind ScratchMaths
(see Footnote 6).

« 55 » ScratchMaths is one beautiful ex-
ample of infusing programming directly into
grade-level-required mathematics for nine-
to eleven-year-olds. At EDC, we are extend-

8 | A not uncommon six-year-old’s pronun-
ciation of “eighth.”

ing that range, building programming into
elementary-school mathematics for children
aged 6 through 11. This new work – current-
ly focused on second grade (seven- to eight-
year-olds) – builds on Think Math (Golden-
berg & Shteingold 2007a, 2007b), inspired
by the brilliant, playful, puzzle-centric ideas
of Sawyer (2003) and Wirtz et al. (1964), de-
scribed earlier. It is driven by state-required
mathematical content and practice, not by
presumed computational thinking (CT)
and computer science (CS) goals, building
programming content and skills as needed
to serve mathematical purposes. But, of
course, to serve the ultimate goal of giving
children a language for their mathematics, it
must, over time, also develop programming,
not be limited to a few basic commands, not
be an app for teaching math. Though the
necessary constraints presented by the for-
mal requirements of state-wide schooling
narrow the range of programming projects
we can choose, the puzzle/surprise/research
principle can survive quite well, even when
constrained by conventional content.

« 56 » Initial programming experiences
for young children can be quite open – di-
recting the actions of a robot, or even just
code-streams of interesting effects – but
if the explicit intent is to give seven-year-
olds a language that lets them experiment
with and express the mathematics they are
learning, the first coding experiences must
be simple enough not to be distraction or
overhead, must be directly connected with
the mathematics they are learning, and must
be full of room for puzzling and exploring.
To keep the intellectual focus on mathemat-
ics – not the mechanics of typing or the
placement of semi-colons – our team chose
the blocks-based language Snap!, motivated
by and visually similar to Scratch, but with
capabilities and constraints optimized for
mathematical programming. Though first
programming experiences will necessarily
be simple, even young children can encoun-
ter key elements of computational think-
ing – expressiveness of a “live” language, a
drive toward abstraction, simple iteration,
and more – in their mathematical learning,
supporting the mathematics and becoming
a foundation for later years’ learning of more
sophisticated programming techniques,
with consequently increasingly varied appli-
cations, as they need them.

« 57 » We have created a sequence of
microworlds (and continue to create more)
– each comprised of a limited command-set
in Snap! and a set of puzzles to solve (some
purely exploratory, some narrowly focused)
through programming. Over the course of a
year, children encounter four to six of these
microworlds, each designed to support, en-
hance and extend one or more mathematical
topics and practices of their grade.

« 58 » One of our microworlds displays
a number line, optionally settable for any
range depending on the grade level, pur-
pose, and accompanying puzzle. The ticks
mark regular intervals, but interval size is
completely settable (consecutive integers,
consecutive eighths, skip counting by any
amount, starting at any arbitrary number).
For the seven-year-olds, the ticks identify
consecutive integers, and only one number
(usually 0) is labeled, intentionally chosen
not to be the leftmost mark on the line (Fig-
ure 16).

« 59 » The seven-year-olds have a pal-
ette of programming blocks, initially just the
ones shown in Figure 17. Clicking a block
performs the indicated arithmetic, shows the
corresponding movement on the line, and

0

Figure 16 • A number line with ticks repre-
senting consecutive integers.

Figure 17 • The initial programming blocks for
the number line microworld.

http://constructivist.info

327

Problem Posing and Creativity Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

labels the result. For example, clicking the +5
block moves the sprite 5 spaces right (arc de-
fault, but optional) and marks the new num-
ber. If the sprite had already been moved to
3, we see the display shown in Figure 18.

« 60 » Two more blocks let them clear
the line and restart at some number (default-
ing to 0) and let them choose the puzzle they
want to work on. They also get two buttons:
one lets them save their work, and one lets
them make their own new block. Of course,
they may also just play with the blocks they
have, without aiming to solve a puzzle.

« 61 » Children explore the tools with
very open puzzles like “How many of the
numbers from 1 to 10 can you label?” Many
initially experiment with no particular plan,
but several of the children became interested
in the pattern produced by the arrows, and
tried systematically to label all the numbers
in a “pretty” way.

« 62 » Olivia, a young seven-year-
old, created the script shown in Figure 19,
and explained how she solved the puzzle.
She said “I just went plus 3, plus 3, minus
5. Then, if I click again, it’s 2. I just click it
fifteen times.” Nobody asked why “fifteen.”
Five clicks will do. This is a wonderful infor-
mal example of reasoning by mathematical
induction, from a seven-year-old!

« 63 » When the children have learned
how blocks can be snapped together to cre-
ate a script, more focused puzzles of increas-
ing challenge require them to experiment,
plan, predict results based on mental arith-
metic and even explain results. Two puzzles
are shown in Figure 20, as they appear to
children.

« 64 » Jake asked if they could make a
block. Yes! We illustrated with Olivia’s script.
Just click the make a block button, name
the new block – in this case, they named it
“+1” because that is what it was intended
to be – and drag in the script that made it
work (Figure 21). The result was a new block

 that they can use.
« 65 » Later, another given block allows

children to combine steps before (or with-
out) creating a new block. Instead of draw-
ing separate arrows for each of the three
steps in Olivia’s algorithm, the combined
script (Figure 22) shows only the resulting
arrow, a single +1 arrow from one number
to the next. The abstraction serves both
mathematical and CS/CT goals.

« 66 » Some puzzles ask for two dif-
ferent scripts that do the same thing. As it
turns out, Olivia’s script and her explanation
of it solved two advanced puzzles that the
class had not yet encountered: one asks for a
script that moves from 0 to 1; the other asks
children to analyze two scripts (Olivia’s and
another) and explain why they do the same
thing. Teachers can hold class discussions to

analyze and explain why a script does what
it does, or to predict a result that is not vis-
ible on the segment of the number line that
they see. For example, shown a script that
moves from 0 to 1, one puzzle asks children
to “predict where these scripts will land
if you start at 19,” a number that does not
appear on their screen. And then there are
proof-challenges “Is there a way to move
from 0 to 1 in exactly 2 moves?” or “What is
the shortest script that…?”

« 67 » Children routinely visit negative
numbers, often by accident, but sometimes
on purpose, and always with no fuss and no
fanfare. Many children have heard of them
and are fascinated by them; most children
get excited, announce these events, and oth-
erwise ignore them and move on. A few ask
questions, and the simple answer is “You
know how to get back to the positive side if
you want to.” This does not obligate any ex-
plaining or “teaching” about negative num-
bers; negative numbers are not in the early
grades’ curriculum, but the experience is
valuable (and builds some correct intuitive
ideas) before formality is mandated.

0 3 8

Figure 18 • A move of from 3 to 8.

Figure 19 • Olivia’s algorithm for getting
from 0 to 1 (left) and the pattern it drew after

many uses.

Figure 20 • Two programming puzzles.

Make a script that
starts at 0 and

ends at 2.

Try to make
a script that starts
at 0 and ends at 2
and doesn’t use

the –3 block

0

Figure 21 • Definition of the block. Figure 22 • The combine steps block performs
the arithmetic before drawing arcs.

http://constructivist.info

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

328

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

« 68 » Because puzzles like these “have
legs” mathematically, they can grow with the
child and serve learning in later grades. At
the simplest, the very same puzzle set can be
used on a “zoomed-in” view of the number
line, to explore fractions (Figure 23). In place
of , , etc., children now puzzle
with

,

, etc., with similar puzzles
challenging them to mark 1/4, 2/4…. If these
puzzles feel so familiar as to be “trivial,” that’s
part of the point; these new numbers, frac-
tions, behave in the familiar way because
they are just numbers; 3/4 + 3/4 gives 6/4, not
the canonically wrong 6/8.

« 69 » Another variant changes the
available blocks to ± 6 and ± 9 and challenges
children to label all the numbers they can.
Both show how versatile this one puzzle for-
mat is, capable of addressing later grade-level
standards (e.g., fractions, factors, multiples,
common factors, analyzing patterns, build-
ing fluency with multiplication facts) and
foreshadowing in grade-appropriate ways
ideas children will make explicit later.

« 70 » In the same way, students build
and compose functions. The seven-year-olds
have a set of function blocks for ± 1, ± 10,
and ± 100, each with an input slot like this

. Children can type a number in the
slot and then when they click on
the block, it performs the operation, e.g.,

 or . They can also
compose functions by dragging one into the
input slot of another . This two-step
process adds 1, then adds 1 to the result.
Again, children can capture that process and
give it a name to say what it does
. Also, as before, the familiar dinosaur and
butterfly offer puzzles: Can you make a block
that adds 200? That adds 0? That adds 9? That
adds 99? That adds 19? That subtracts 2? That
adds 8? That subtracts 9? The last often turns
out to be significantly more challenging than
the others.

« 71 » Standard approaches push for au-
tomaticity at adding or subtracting 9 and 8 to
single-digit numbers, relying on paper-pen-
cil algorithms for larger computations. But

by seeing these operations as easy, automatic
two-step algorithms, students can perform
the same calculations with any number, an
idea that generalizes to many other approx-
imate-then-adjust approaches.

« 72 » In later grades, children encoun-
ter essentially the same idea, and compara-
ble puzzles, with multiplication and division.
They start with blocks × 2, ÷ 2, × 10, ÷ 10,
× 100, ÷ 100, and can compose operations
like and into
two-step algorithms like

. Comparing such two-step
processes to one-step operations they al-
ready know lets them produce new blocks,
like .

« 73 » With verbal (not written!) prac-
tice structured to take advantage of our
“built-in” cognitive expectation of the dis-
tributive property and of the linguistic relat-
edness of, for example, six, sixty, six-hundred,
it is relatively little work for (most) children
to learn to halve any number mentally. The
pattern of multiplying by 10 is even easier
to acquire. (The reason why the “tack-on-a-
zero” pattern works is often harder to grasp,
but worth building.) In any event, for many
children who have built those two skills, the
experience of inventing and building a × 5
machine as either or
lets them become quite adept at mentally
multiplying any two-digit numbers by 5,
supplementing the one-digit facts that their
teachers and parents want them to acquire.
Again, the puzzles ask them to invent a vari-
ety of new tools like × 4, ÷ 4, × 100, and so on.
And, again, they play.

« 74 » It is clear where these puzzles are
going mathematically, but where are they go-
ing creatively? Let us look again at the sense
in which these are “puzzles” and not just
standard exercises.

« 75 » In the earliest puzzles – compos-
ing ± 1, ± 10, and ± 100 blocks to build new
blocks like – the children create
many special blocks themselves, mastering
the reasoning: composition of mentally easy
and understandable place-value-based oper-
ations to do more “difficult” operations. They
are learning not just a specialized trick or two
but a way of thinking, a way to invent math-
ematical methods. We pose only a limited set
of puzzles, both because we cannot think of
all possibilities and also because there is no
need to; we deliberately leave room for the

children to play. And they do play. A lot. No-
body chooses (or sticks with) play that bores
or defeats them, so the children create their
own differentiated learning. The challenges
they create for themselves are (generally)
precisely at their own frontiers of knowl-
edge, skill, cognition, and interest in ways we
could not have known. Part of this readiness
to play appears to be the direct result of hav-
ing a notation system (programming) that
is active, unlike marks on a paper that just
sit there passively. They treat these tasks as
puzzles, trying to see – just as they might on
a playground – what new trick they can do.
Standard math problems are “done” as soon
as one has written a number on the page.

« 76 » Of course, mathematics is more
than arithmetic, so an approach that uses
programming as an expressive language to
support mathematical learning must provide
vocabulary and methods for handling shape,
size, angle, distance, structure…, and good
situations – puzzles – in which to explore
those ideas. ScratchMaths gives a beautiful
example of a focus on angle, distance, and
structure – structure in the code itself as well
as in the visual, often symmetric, designs it
produced. Angle is subtle in many ways – not
just the conventions for quantifying angles in
degrees and the modularity of that quantifi-
cation, but also just the multiple meanings
and images of angle – and consequently hard
to present in a clean way to seven-year-olds.
But young children can create code that nav-
igates a map and they particularly happily
play with puzzles involving distance and di-
rection on simple grid-like maps of “towns”
in which various buildings (houses, schools,
libraries) are personalized with the children’s
own names. (“You’ve found paths between
Mia’s and Adam’s houses that are four blocks
long. You’ve found longer paths that are six
blocks long. Can you find a path that is ex-
actly five blocks long?”)

« 77 » Producing and interpreting small
arrays as images of multiplication is mandat-
ed mathematical content, and the relevant
puzzles can be fun and attractive. Children
generate colorful rows (solid or patterned) of
repeated squares, and arrays from repeated
rows, and the similarities of the algorithms
inside draw row and draw array illustrate the
meaning and value of “abstraction.” Abstrac-
tion includes both generality and “hiding
complexity” – suppressing details or iden-

0 1
4

2
4

Figure 23 • Zooming in on the number line.

http://constructivist.info
http://constructivist.info

329

Problem Posing and Creativity Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

tifying the important characteristics for a
particular purpose – by creating a single
new command/function to replace a longer
collection of instructions that would other-
wise have to appear in several places. Older
children may parameterize their blocks that
draw rows or arrays. A draw array block de-
pends on two parameters, the dimensions of
the array; a draw rectangle block is a further
(simpler) abstraction, using the same two
inputs but drawing only the border of the ar-
ray. For either of these, older children might
invent a playful quiz, having their program
draw a random-sized array and ask about
area (how many tiles it has) or perimeter, us-
ing their own reasoning about those inputs
in order to teach the program how to calcu-
late the correct answer.

« 78 » At the high-school level, pro-
gramming allows students to build the
mathematical objects and processes that
they are studying: relatively easily, they can
build functions that manipulate polynomi-
als, transform points with matrices, render a
set of points in space in a convincing projec-
tion on the screen (Lewis 1990), and study
algebraic structures (Cuoco 1990). And tools
such as Geometer’s Sketchpad or Cabri – not
programming as it is usually thought of, but
programming nonetheless, with construc-
tion specified by the students rather than
just use of the computer to manipulate pre-
designed models – allow students studying
geometry to build models of mathematical
objects and ideas, and to explore the conse-
quences of manipulations of those models.

Programming in general

« 79 » The current excitement with
“coding for all” creates a challenge. There is
no more room in the curriculum. If coding
(for coding’s sake) is added, what gets shoved
out of the way? But if coding is learned in ser-
vice of content that is already core, it is not a
displacement. Our motivation for program-
ming in elementary-school mathematics
was for the sake of the mathematics – not an
“extra,” but an improvement of content that
is already core. It also serves the push for
“coding.” Mathematics is not the only core
context in which programming could poten-
tially serve as a supportive, non-distracting
medium but, at the elementary-school level

– especially in the early grades – it may be
the easiest and most natural. And what sev-
en-year-olds can do allows eight-year-olds to
do more. Incrementally, it sets a strong foun-
dation for secondary students’ learning.

« 80 » Moreover, genuine continuity can
be achieved. Beauty and Joy of Computing
(BJC)9 is an entirely separate piece of work,
an Advanced Placement Computer Science
course whose explicit mission is broadening
participation in computer science. In service
of this goal, BJC takes on computer science
with a programming-centric approach, let-
ting students experience the joy of creation
and see beauty not only in the objects they
can produce through programming, but also
in the programs themselves. It introduces
the elegance of recursion and higher-order
functions, making these reputedly “diffi-
cult” topics accessible by virtue of the lucid
visual imagery of Snap!, a language that is
not unreasonably characterized as Scheme
disguised as Scratch.

« 81 » Initial funding for BJC required
it to be an Advanced Placement course with
a framework dictated by the College Board.
Even so, except as constrained by AP re-
quirements, BJC is largely project-based
with experience before formality; the ex-
plorations through which programming is
learned include projects set in contexts like
art and graphics, linguistics, mathematics,
and games. While BJC is not at all a math
course, its activities naturally touch – and
help teach – many conventional mathemati-
cal content topics, and its approach to pro-
gramming is consistently focused on math-
ematical and computational thinking (CT).
The reason it introduces various contexts –
the arts, linguistics, etc. – is partly to meet
the varied interests of students, but much
more to show how broadly programming
applies, how broadly the students can allow
their ideas and creativity to wander, how
much they can tailor their own projects, for
which the AP framework allocates time, in
their own personal direction.

« 82 » Even though BJC is explicitly an
AP course for high school, excerpts involv-
ing recursion were used successfully in a
computer science elective with sixth graders.
They wrote recursive code to draw a com-
plex tree, and here they and their teacher are

9 | http://bjc.edc.org

giggling at the result of a gossip-producing
program with a randomly invoked recur-
sive step that, in this case, generated a very
long sentence (Figure 24). Other students in
this elective created a program to conjugate
Spanish verbs properly so that they could
generate sentences in Spanish. They tested
the work of their programs by using map, a
higher-order function, to apply their conju-
gation block to a list of verbs.

Playgrounds

« 83 » Giving even very young students
a way to think algebraically using bags and
marbles lets them invent mathematical tricks
they love. It prepares them for algebra but
more importantly, it lets them feel smart
and pose problems and play with their own
algebraic ideas. More broadly, treating math-
ematics as serious intellectual play, puzzling
things out by searching and researching,
and gaining the intellectual tools for posing
one’s own challenges teaches children to be
mathematicians. Papert suggested program-
ming as a medium for that, but the essential
ingredient remains the promotion of serious
intellectual play. Programming taught just as
a skill or to meet new standards may well not
serve that purpose. But if a programming en-
vironment lets students explore and create,
provides good tools for doing that, and gives
students the “third language of mathematics”
so that as their ideas and thinking grow in
sophistication they have a language for ex-
pressing and honing those ideas, such an en-
vironment does add a new playground con-
sistent with Papert’s vision of children being
creatively engaged as mathematical thinkers.

Figure 24 • Surprise and delight at the
complex result of a recursive process.

http://constructivist.info
http://constructivist.info
http://bjc.edc.org

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

330

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

Conclusion

« 84 » A few states, including Massachu-
setts (where I live), have begun to develop
frameworks for CT across the grades (http://
www.doe.mass.edu/frameworks/dlcs.pdf).
CT is variously defined but always includes
elements like abstraction, algorithm, model-
ing and simulation, programming, and data
(with an implication, not reflected in all im-
plementations, that “data” means big data).
Not surprisingly, to help develop this think-
ing there has been a proliferation of on-
computer activities not involving program-
ming and also “unplugged” activities to the
same end.10 The difficulty of adding anything
to an already jam-packed school day has led
to much talk about integrating CT activities
into existing content areas, particularly sci-
ence and mathematics (e.g., https://go.edc.
org/elementary-ct), but also language. In my
opinion, some of the integration suggestions
are shallow, but that should be no surprise
at a time when the whole effort is so new.11
Still it got me to thinking about why my own
inclination has been toward programming,
not away, and toward abstraction, and algo-
rithm rather than modeling and simulation,
whenever the aim is explicitly to integrate
with other subjects.

« 85 » I think my particular leaning
may be largely bias, possibly the result of

10 | As I was completing this article, I received
a copy of Bebras (http://www.bebras.lt), a set of
activities, many puzzle-like, that I found quite ap-
pealing, all designed to develop various elements
of CT in students.

11 | And, clearly I, myself, am being a bit
shallow in using the vague quantifier “some sug-
gestions.” Of course, in any situation, some sug-
gestions will be shallow.

my greater focus on elementary and middle
school, and greater focus on mathematics
than on science. At the elementary-school
level, modeling and simulation seem easier
to integrate with science than with math-
ematics; programming, along with abstrac-
tion and algorithm, seems easier to integrate
with mathematics than with science.

« 86 » Modeling, for example, is some-
thing that mathematics (and mathemati-
cians) can do, and since mathematics can
build models of mathematical ideas, model-
ing is also something that mathematics uses.
But, at least as far as I see at the elementary-
school level (especially in the early grades)
modeling with mathematics – creating
mathematical models of phenomena – is
very limited. And it is fairly abstruse, in the
following sense. While every mathematical
statement (like “there are seven cows”) is an
example of an abstraction (the cowness is re-
duced to irrelevancy) and just a model of the
experiential reality, no child in the known
universe thinks of such a statement as an
abstraction or a model. That level of abstrac-
tion is so normal to them that it is totally
“invisible” – it is just what language does.
By contrast, modeling is a natural place to
focus in science – the core of experimenta-
tion and the form of many scientific claims
– and simulation (at least as generally used)
is an automation/extension/elaboration of
modeling.

« 87 » Programming is exactly the op-
posite, easier to integrate into (early) math-
ematics than into science. (Of course, take
this with a grain of salt, as I have not given
scientific programming nearly as much
thought. As I advertised, these are wild final
thoughts that I might disown tomorrow.)
That may be partly because the kinds of
statements one makes in early mathemat-

ics tend to be about relationships and about
simple processes. “Writing a program” that
enacts a function, like doubling or adding
10 to its input, is easy programming. In-
deed, it is easier to write in a general way as
a program (a Snap! block) than as a paper-
pencil scrawl, because a program is an ac-
tive notation; it will perform the action and
give feedback, which paper-pencil scrawls
do not. It is also a structured notation, im-
posing a bit of order on what young stu-
dents typically scatter over a page in a way
that, even if totally correct, does not reveal
their logic. Similarly, writing a program that
pairs elements of two sets, writing a pro-
gram that draws simple shapes, or creates
arrays or paths to study, is mathematically
on task and easy programming. By contrast,
most scientific phenomena are too complex
for young children to model by writing a
program (often pretty complex even for
adults).

« 88 » I would love to get reactions to
this last, very spur-of-the-moment rumina-
tion. What genuine programming activities,
at the elementary-school level, can be inte-
grated with science in a developmentally
appropriate and scientifically relevant way?
And what modeling or simulation activities,
again at the elementary-school level, can be
integrated sensibly with mathematics?

Acknowledgements

Funding for doing and reporting the
work described in this article was provided
in part by the National Science Foundation,
grants 0917958, 1135173, 1441075, 1543136,
1621011 and 1741792. Views expressed here
are those of the author and do not necessar-
ily reflect the views of the Foundation.

PAUL GOLDENBERG
has been at EDC for over 30 years. He has taught primary-school, middle-school, high-school computer
science, and graduate-school mathematics and psychology for education. He worked at the MIT Logo
Laboratory with Seymour Papert and at BBN Labs with Wallace Feurzeig. At EDC, he designs, crafts,
and researches learning materials for K-12 students and teachers, using or rekindling their natural
curiosity about and interest in mathematics. With many others, Paul helps lead EDC’s initiatives to
broaden access to CS. The NSF funded BJC curriculum emphasizes programming and social issues of
computing, and is now taught to over 2,500 students/year in New York City alone. See Paul’s blog posts
about early mathematics: http://ltd.edc.org/wrong-answers-or-wrong-questions and https://blogs.
ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-know/.

{

http://constructivist.info
http://constructivist.info
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf
https://go.edc.org/elementary-ct
https://go.edc.org/elementary-ct
http://www.bebras.lt
http://ltd.edc.org/wrong-answers-or-wrong-questions
https://blogs.ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-know/
https://blogs.ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-know/

331

Keeping the Children as Question Marks Evgenia Sendova & Pavel Boytchev

Constructionism

 http://constructivist.info/14/3/319.goldenberg

References

Cuoco A. (1990) Investigations in algebra. MIT
Press, Cambridge MA.

Danesi M. (2002) The puzzle instinct. Indiana
University Press: Bloomington IN.

Goldenberg E. P. & Carter C. J. (2018) Myths of
priority and unity in mathematics learning.
Education Sciences 8(2): 85. https://www.
mdpi.com/2227-7102/8/2/85/htm

Goldenberg E. P., Mark J., Kang J., Fries M.,
Carter C. & Cordner T. (2015) Making
sense of algebra: Developing students’
mathematical habits of mind. Heinemann,
Portsmouth NH.

Goldenberg E. P. & Shteingold N. (2007a) Early
algebra: The MW perspective. In: Kaput J. J.,
Carraher D. W. & Blanton M. L. (eds.) Alge-
bra in the early grades. Erlbaum, Hillsdale
NJ: 449–475.

Goldenberg E. P. & Shteingold N. (2007b) The
case of Think Math! In: Hirsch C. (ed.)

Perspectives on the design and development
of school mathematics curricula. National
Council of Teachers of Mathematics, Reston
VA: 49–64.

Lewis P. (1990) Approaching precalculus math-
ematics discretely. MIT Press, Cambridge
MA.

Mark J., Goldenberg E. P., Kang J., Fries M. &
Cordner T. (2014) Transition to algebra.
Heinemann, Portsmouth NH.

Otten M., Heuvel-Panhuizen, M van den,
Veldhuis M., Heinze A. & Goldenberg E.
P. (2017) Eliciting algebraic reasoning with
hanging mobiles. Australian Primary Math-
ematics Classroom 22(3): 14–19.

Papert S. (1972) Teaching children to be math-
ematicians versus teaching about mathemat-
ics. International Journal of Mathematical
Education in Science and Technology 3(3):
249–262.

Sawyer W. W. (2003) Vision in elementary math-
ematics. Dover, New York.

Schulz L. E. & Bonawitz E. B. (2007) Serious
fun: Preschoolers engage in more explorato-
ry play when evidence is confounded. Devel-
opmental Psychology 43(4): 1045–1050.

Sendova E. (2013) Assisting the art of discovery
at school age: The Bulgarian experience. In:
Sanchez-Escobedo P. (ed.) Talent develop-
ment around the world. Mérida, Yucatán:
39–98.

Sendova E. & Sendov B. (1994) Using computers
in school to provide linguistic approaches
to mathematics: A Bulgarian example.
Machine-Mediated Learning 4(1): 27–65.

Wirtz R., Botel M., Beberman M. & Sawyer
W. W. (1964) Math workshop. 17 volumes.
Encyclopaedia Britannica Press, Chicago IL.

Received: 7 January 2019
Accepted: 28 March 2019

Keeping the Children
as Question Marks:
Educational Attempts
to Tap Curiosity and the
Drive for Challenge
Evgenia Sendova
Bulgarian Academy of Sciences,
Bulgaria
jenny.sendova/at/gmail.com

Pavel Boytchev
Sofia University, Bulgaria
boytchev/at/fmi.uni-sofia.bg

> Abstract • Supporting the inborn cu-
riosity of children is the motivation for
our involvement in developing novel
curricula, textbooks and microworlds.
Our main goal of implementing the
constructionism as a fundamental edu-
cational strategy is to keep the students
“as question marks,” i.e., to encourage
them to pose questions, to make experi-
ments, to invent their own problems. We
strongly support the ideas behind Gold-
enberg’s experience in learning environ-
ments, generating curiosity and creative
engagement (§15). As an extension of
the ideas in §54 we propose a metaphor
to visualize how programming can be
“repurposed” to wrap the math in an at-
tractive, yet educationally effective way.

“Children enter school as question marks
and leave as periods.”

(Postman & Weingartner 1969: 53)

Can you solve my problem? –
Supporting students to invent their
own problems
« 1 » In 1999 Seymour Papert formu-

lated the Eight Big Ideas Behind the Con-
structionist Learning Lab.1 Two of them are
hard fun and taking time. The problem with
implementing them in the regular school
setting is that it “is even more rigidly con-
strained than it used to be,” as Paul Gold-
enberg states in §1 of his target article. It

1 | https://inventtolearn.com/8-big-ideas-of-
the-constructionist-learning-lab/

Open Peer Commentaries
on Paul Goldenberg’s “Problem Posing and Creativity
in Elementary-School Mathematics”

http://constructivist.info
http://constructivist.info
https://www.mdpi.com/2227-7102/8/2/85/htm
https://www.mdpi.com/2227-7102/8/2/85/htm
https://inventtolearn.com/8-big-ideas-of-the-constructionist-learning-lab/
https://inventtolearn.com/8-big-ideas-of-the-constructionist-learning-lab/

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

332

Keeping the Children as Question Marks Evgenia Sendova & Pavel Boytchev

Constructionism

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

Keeping the Children as Question Marks Evgenia Sendova & Pavel Boytchev

Constructionism

is not easy to evaluate the achievements of
students and teachers, creatively engaged in
mathematical activities, especially if assess-
ment instruments are focused on multiple-
choice tests. Still, Goldenberg demonstrates
how children in the (pre-)primary school
can be supported in solving and creating
math problems. This requires dedicated
teachers who enjoy challenges posed by
children and look for children’s reasoning.

« 2 » Goldenberg shares his fascination
with an “algebraic approach to teaching el-
ementary arithmetic” in which the emphasis
is on “play and surprise” (§12). Although the
content corresponds to the level expected
for the grade, it challenges the children to
do research, to observe patterns, to figure
out why a puzzle works, to create ones of
their own. This serves as a propaedeutic for
the formal algebraic language they will learn
later.

« 3 » In this context the reward is not to
get a single correct answer. To see the gen-
erality, “to create that abstraction for them-
selves, children need research time” (§30)
– to illustrate the instructions of the math
trick by their own pictures, to try the trick
with different numbers so as to extract the
general rule, and finally to figure out how to
construct their own tricks (§§28–48).

« 4 » The technique of interpreting
linear equations with bags and marbles is
implemented in various virtual environ-
ments providing students with platforms for
understanding ideas behind formal manip-
ulations. A focus on algebra as a language

for describing relationships of quantities
manifests itself in the computer environ-
ment Marble Bag Microworld, developed by
Wally Feurzeig (1986) as a machine imple-
mentation of the idea presented in 1964 by
Sawyer (2003) and implemented in Wirtz et
al. (1964) (§12). Students are introduced to
standard algebraic notation by creating and
solving story problems. They observe the
correspondence between the iconic, Eng-
lish, and standard algebraic representations
(Figure 1). The goal is that “these activities
provide a cognitive foundation for students’
understanding of operations on equations”
(Thomson 1989: 13).

« 5 » An example of the work of Equa-
tion Balance by Pavel Boytchev is shown in
Figure 2. It features scales with golden bars
(units) and boxes (variables) representing a
linear equation. The initial problem can be
solved in different ways, and then the solu-
tion is used as a generator of new problems.

« 6 » Tom McDougal, a math teacher
from Chicago, extended Equation Balance to
allow variables on both sides, negative val-
ues and custom equations. He described the
usage of the application with eighth-graders
as “fabulously effective” (Boytchev 2019).

« 7 » An interesting question consid-
ered in Goldenberg’s §66 relates to how
children explain different scripts doing the
same thing. We arrived at such a situation
in the Weblabs project (Gachev, Sendova
& Nikolova 2005). Sixth-graders from Bul-
garia and Portugal had created ToonTalk ro-
bots producing seemingly the same infinite

sequence. After comparing the algebraic
representations and the Logo procedures
the final proof of equivalence was given by
means of the difference equations theory.
All the problems created by children pre-
sented in the target article have arithmetic
(later algebraic) content. As far as geomet-
ric content is concerned, such experience
is very limited. In Bulgaria, stereometry is
introduced in the fifth and sixth grades, the
focus being on learning the formulae rather
than on stimulating spatial imagination, or
on formulating problems. An approach to
improving the situation was offered by the
DALEST project (Developing an Active
Learning Environment for the Learning
of Stere ometry) (Boytchev, Chehlarova &
Sendova 2007). Students from five coun-
tries were provided with applications to ex-
plore the properties of 3D objects, to solve
and formulate their own problems. Here is
an example of a problem created by Koya,
a 12-year-old girl (Chehlarova & Sendova
2009):

“ Koya’s problem: Eliminate a cube from each
of the compositions in Figure 3 so as to get re-
spective compositions for which each layer (along
each direction) contains a cube of each color pres-
ent in the composition.”

« 8 » The steps Koya took in the process
of creating a problem were verbalizing the
idea to use a two-color composition of size
3x3x3; adding additional cubes to generalize
the problem with three colors; and tuning

Figure 1 • Screenshots of the work of Thompson (1989) with a prototype of the software developed by Feurzeig. Left: Creating a secret number
story, translated in English and in algebraic notation; Right: Using virtual marbles and marble bags to represent each line in the story.

http://constructivist.info
http://constructivist.info

Keeping the Children as Question Marks Evgenia Sendova & Pavel Boytchev

Constructionism

333

Keeping the Children as Question Marks Evgenia Sendova & Pavel Boytchev

Constructionism

 http://constructivist.info/14/3/319.goldenberg

the formulation to a language closer to that
of everyday life. These steps were described
in a DALEST scenario to be used by other
students for creating their own problems.

« 9 » What we observed in children’s
work was that they were eager to show their
problems to peers and observe their reac-
tions. The children shared the way of com-
posing the problem, discussed some errors,
and modified the original composition into
new problems.

Happy Birthday, Miss Pencheva! –
Inventing problems as presents
« 10 » An interesting series of logical

problems appeared as a collective present to
Galya Pencheva, a dedicated math teacher
and graduate student at IMI-BAS. Although
she had given students the task of inventing
their own problems on a specific topic, the
final booklet of problems from her fourth-
graders came as a total surprise. Figure 4
shows one of them.

« 11 » In a nutshell, the importance
of cultivating the skill in children of ask-
ing questions, and posing and formulating
problems should be recognized by teach-
ers and teacher educators and supported
by the designers of learning environments.
And the novel learning environments (digi-
tal and non-digital alike) would gain from
“stepping on the shoulders” of educational
giants such as Sawyer (§12).

The centrality of question asking
« 12 » Stephen Brown and Marion Wal-

ter (2005: 3) state,

“ [t]he centrality of problem posing or question
asking is picked up by Stephen Toulmin in his ef-
fort to understand how disciplines are subdivided
in sciences.”
They refer to this passage in Toulmin:

“ If we mark the sciences off from one another
[…] by their respective ‘domains,’ even these do-
mains have to be identified not by the types of
objects with which they deal, but rather by the
questions which arise about them […]” (Toul-
min 1977: 149)

« 13 » Studying disciplines separately
simplifies things, allows us to stay focused
and is useful in the short term, but in the

6x+14=38

6x=24

x=4

3x+7=19 3x+3=15 x+1=5

4x=16

+9

4x+5=21

x+9=13 11x+99=143 11x+29=73

Initial
Problem Solution

New Problem

Another
New Problem

–14 /6

/2 –1–4 /3 *11 –70

*4

+5

Figure 2 • Equation Balance – problem solver and problem generator.

Figure 3 • Compositions with two and three colors.

The 4th-graders taught by Miss
Pencheva decided to create problems as
a present for her birthday. They made
rebuses, equations and diagrams.
10 children made rebuses, 12 made
equations and 6 of those who created
equations had not made diagrams. 3
children created problems of each of the
3 types. Those who invented problems
on diagrams and rebuses but not on
equations were half as many in number
as those who invented equations and
rebuses but not diagrams. There was 1
child who invented only rebuses. Those
who created problems on diagrams and
equations but not on rebuses numbered
3. How many children created only
problems on diagrams?

Figure 4 • Left: The original formulation of one of the children’s greeting problems.
Right: Translation.

http://constructivist.info
http://constructivist.info

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

334

Keeping the Children as Question Marks Evgenia Sendova & Pavel Boytchev

Constructionism

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

Problem Posing and Programming Mattia Monga

long term – it is devastating. This is some-
thing we observe in our work with under-
graduates and with in-service and pre-ser-
vice teachers. They find it difficult to apply
their knowledge from one field to another,
and even worse – they cannot imagine that
they could do it. After discussing how to vi-
sualize the problem, one of us came up with
the following metaphor.

Boytchev’s metaphor
« 14 » Every science consists of a ker-

nel (candy) and an interface (wrapper).
In mathematics the kernel is the genuine
mathematical knowledge – mathematical
notions, phenomena, models, etc., whereas
the interface is the mathematical language
to access and express the kernel – formulae,
variables, etc.

« 15 » Similarly, the sorting algorithms
belong to the kernel of programming, while
the programming languages are the inter-
face. Every science has its specific, unique
interface, but their kernels share a lot of
common features. The appearance of multi-
disciplinary sciences (bioinformatics, astro-
physics, computational neuroscience, etc.)
is an attempt to use the interface of one sci-
ence with the kernel of another – this leads
to new ideas and discoveries.

« 16 » The problem with working with
younger children is that it is difficult for

them to unwrap the candy. If the kernel is in
a child-friendly wrapper, they will be eager
and will be able to unwrap it. We find the
same idea in Goldenberg’s §54. Program-
ming can be “repurposed” to wrap the math
in an attractive, yet educationally effective
way. It is not used to replace the formal
interface, but is used to reach the core and
eventually to master the formal math lan-
guage later on (Figure 5).

« 17 » In response to Goldenberg’s §88
we would paraphrase Richard Feynman
(1999: 4): that even though we do not know
the answer we find it optimistic to keep try-
ing new solutions since this is the way to do
everything.

References

Boytchev P. (2019) Developing educational
content [in Bulgarian]. University Press “St.
Kliment Ohridski”, Sofia (in press).

Boytchev P., Chehlarova T. & Sendova E. (2007)
Virtual reality vs real virtuality in mathemat-
ics teaching and learning. In: Proceedings
of the Joint IFIP Conference Informatics,
Mathematics, and ICT: A “golden triangle”
(IMICT 2007), Boston, USA. CCIS, North-
eastern University, Boston: 1.

Brown S. I. & Walter M. (2005) The art of
problem posing. Third edition. Lawrence
Erlbaum Associates, Mahwah NJ.

Chehlarova T. & Sendova E. (2009) Enhancing
the art of problem posing in a dynamic 3D
computer environment. In: Proceedings of
the 6th congress of the mathematicians of
Republic of Macedonia, Struga 19–22 Octo-
ber 2008. Alfa 94 MA, Skopje: 19–28.

Feurzeig W. (1986) Algebra slaves and agents
in a Logo-based mathematics curriculum.
Instructional Science 14(3–4): 229–254.

Feynman R. (1999) The meaning of it all. Pen-
guin, London.

Gachev G., Sendova E., Nikolova I. (2005)
The-more-it-changes-the-samer-it-gets
principle in the context of mathematics and
informatics education. In: Gregorczyk G.,
Walat A., Kranas W. & Borowiecki M. (eds.)
Proceedings of EUROLOGO ’2005. DrukS-
fera, Warsaw: 87–99.

Postman N. & Weingartner C. (1969) Teaching
as a subversive activity. Dell, New York

Sawyer W. W. (2003) Vision in elementary math-
ematics. Dover, New York.

Thompson P. W. (1989) Artificial intelligence,
advanced technology, and learning and
teaching algebra. In: Kieran C. & Wagner S.
(eds.) Research issues in the learning and
teaching of algebra. Erlbaum, Hillsdale NJ:
135–161.

Toulmin S. (1977) Human understanding. Princ-
eton University Press, Princeton NJ.

Evgenia Sendova is an associate member of IMI-BAS,
at the Education in Mathematics and Informatics

Department. As a member of an educational
experiment (1978–1999) conducted by BAS and

the Ministry of Education, she was involved in
creating a new curriculum, educating teachers and
students. Since 1997 she has been a tutor at RSI −

an international summer program for high-school
students organized by the Center of Excellence in
Education and MIT, USA. Sendova is currently the

IMI-BAS coordinator of the Scientix European project.

Pavel Boytchev is an associate professor and
researcher at the Faculty of Mathematics and

Informatics, Sofia University. His research interests
are developing courses and educational software

based on computer graphics. He has created a dozen
courses, hundreds of computer-generated video

clips and thousands of computer programs.

Received: 27 May 2019
Accepted: 10 June 2019

Math language

Math

Math
language

Programming is demonstrated
to be easier to introduce

to young children

Programming can be used
to represent mathematical ideas

and concepts

Understanding math leads
to comprehension of the formal

math language

Traditional approach
of teaching math

via its formal language

An alternative path
to teaching math

MathProgrammingPr
og

ramming language

Programming Math

Figure 5 • Using programming to learn Math and Math language.

http://constructivist.info
http://constructivist.info

335

Problem Posing and Programming Mattia Monga

Constructionism

 http://constructivist.info/14/3/319.goldenberg

Problem Posing and
Programming as a General
Approach to Foster the
Learning of Mathematics
Mattia Monga
Università degli Studi di Milano, Italy
mattia.monga/at/unimi.it

> Abstract • Finding tasks to propose
to children, able to generate curiosity
and creative engagement without hav-
ing just gamified school exercises is
very difficult. The appeal of a traditional
curriculum is its (deceptive) scalability.
Programming as a language is a power-
ful metaphor, much more powerful than
the one suggested by using simple, pre-
defined building blocks that fit well to-
gether.

Creativity, puzzles, and educational
agendas
« 1 » In the target article Paul Golden-

berg argues that puzzles have the potential
to engage children in a genuine mathemati-
cal research activity, even more so when
they are requested to produce variants of the
puzzles they solved (§§1–50). Goldenberg
shows interesting examples that are both
surprising and generate curiosity (as prom-
ised in §16). However, from my experience
with the organization of a computational
thinking contest in which every year we pro-
pose tasks to students with similar goals to
those in Goldenberg’s scheme, I learned that
it is not easy to keep the bar of surprise and
curiosity high while pursuing an education-
al agenda. If one wants to cover a specific
curriculum, it can be hard to come out with
clever puzzles instead of trivial gamified ex-
ercises unable to fully engage the creative
impetus of children.

Puzzles and the appeal of abstract
thinking
« 2 » Mathematical puzzles have a very

long history: several examples from Greek
or Vedic mathematics are well known and
they amused generations of curious stu-
dents. They were probably invented to sum-
marize or exercise mathematical knowledge,
but also to make the abstract nature of math-

ematics more palatable to the general public.
This is why we found them not only in the
mathematical literature, but also in writings
directed to a wider audience. For example,
the well-known Diophantus’ epitaph:

“Here lies Diophantus,” the wonder behold.
Through art algebraic, the stone tells how old:
“God gave him his boyhood one-sixth of his
life,
One twelfth more as youth while whiskers
grew rife;
And then yet one-seventh ere marriage
begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his
father’s life chill fate took him.
After consoling his fate by the science of
numbers for four years, he ended his life.”

was not found in a mathematical text, but
came to us from a collection of Greek epi-
grams and short poems (the Anthologia Pa-
latina) directed to a general audience.

« 3 » Today the use of puzzles, riddles
and other short challenges to complement
or aid the learning of mathematics is
popular, as testified by several successful
initiatives, able to engage millions of
school pupils every year. One of the
most widespread is the Kangourou des
Mathématiques with about 6,000,000
participants from 78 countries, see http://
www.aksf.org/statistics.xhtml. It is a game
contest created in 1991 in France by André
Deledicq on the model of the Australian
Mathematics Competition, with the goal of
contributing to the popularisation and the
promotion of mathematics among young
people with the contest, but also through
the associated distribution of a massive and
pleasant documentation on mathematics to
the participating pupils and their teachers.

« 4 » The Kangourou game-contest idea
was brought to informatics and computa-
tional thinking by Valentina Dagienė, who
in 2004 started the Bebras challenge.1 Bebras

1 | Bebras is the Lithuanian word for beaver,
an animal that is somewhat common in Lithu-
anian folklore and is iconic of a major computer
science problem, the “busy beaver.” See https://
www.bebras.org About 3,000,000 participants
from more than 50 countries took part in 2019.

tasks are designed to promote interest in
informatics through recreational although
educational activities (not necessarily com-
puter-based). Participants are usually super-
vised by teachers who may integrate the Be-
bras challenge into their teaching activities.

« 5 » Both Kangourou and Bebras are
successful initiatives, at least judging by their
popularity among students and, even more,
among teachers who see their pupils enthu-
siastically engaged with the subject they love,
compared with the boredom and ineffective-
ness generated by traditional approaches.
However, finding the right tasks to propose
to children, able to “generate curiosity, the
creative engagement that Papert referred to
as the experience of the mathematician” as
Goldenberg writes in §16 of his target article
without having just gamified school exer-
cises is very difficult and takes the efforts of
a whole research community as varied as
Kangourou or Bebras ones. I doubt a single
teacher or even a classroom/school chapter
of teachers could sustain the necessary cre-
ativity for long enough to cover the needs
for their curricular programs. Even Bebras
delegates often struggle to propose new task
ideas and several parts of the area of expertise
that Bebras aims to address remain uncov-
ered. It is not easy to categorize either Bebras
tasks or the target competences (see Dagienė,
Sentance & Stupurienė 2017 and Lonati et al.
2017 for alternatives), but every taxonomy
has items that are neglected in most editions
and others that repeatedly attract the ideas
of task designers every year (although often
with simple variants of a main basic idea)
even if the role of the issue they cover is rela-
tively marginal in Bebras goals.

« 6 » The appeal of a traditional cur-
riculum is its (deceptive) scalability: writ-
ing systematic textbooks with a large col-
lection of repetitive exercises is easier than
designing engaging activities for a whole
curriculum. And the creative engagement
associated with what is successfully learned
with well designed “research playgrounds”
risks obscuring the value and diverting ef-
forts from more grueling areas. This does
not mean that the project-based approach
should not be pursued further, but it should
remind us that we all “learned” some things
by a rote or strictly algorithmic approach,
and yet they came out still having a power
in our minds.

http://constructivist.info
http://constructivist.info
http://www.aksf.org/statistics.xhtml
http://www.aksf.org/statistics.xhtml
https://www.bebras.org
https://www.bebras.org

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

336

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

Programming and learning
mathematics
« 7 » Goldenberg argues that program-

ming can become a language for and a natu-
ral part of learning mathematics (§51). Co-
herently with the suggestions of the first part
of the article (§§1–50) he reports on a puz-
zle-based research playground that involves
programming. Although some more sophis-
ticated examples are mentioned (§§80–82),
the ScratchMaths showcase proposes a pro-
gramming tool with a limited potential of
expression, based only on simple sequences
of predefined steps. If programming is sup-
posed to be a key mental tool to express
mathematical ideas, this seems to me too
limited even at the target age addressed by
Goldenberg’s proposal.

Programming as a language
« 8 » From a constructionist viewpoint

of learning, programming languages may
have a major role: in some sense they can
be a tool for sharing “artifacts” able to ex-
plicitly show one’s theories of the world. The
crucial part is that artifacts can be executed
independently of the creator: someone’s
(coded) mental process can become part of
the experience of others, and thus criticized,
improved, or adapted to a new project. Pa-
pert’s experiments with the programming
environment LOGO were designed exactly
to let pupils tinker with math and geometry.

« 9 » But LOGO is itself a formal lan-
guage, maybe more regular and simpler
than the traditional mathematical one, but
still requiring an effort to understand its
precise semantics and the “notional ma-
chine” that enacts the utterances one in-
vents. In the last decade, a number of block-
based programming tools (such as Scratch
and Snap!) have been introduced, which
should help students to have an easier time
when first practicing programming. These
tools, however, while reducing the friction
with traditional (text-based) syntactic rules
can even make the thing more complex
when the programmer should focus entirely
on the processing of the pieces of informa-
tion she wants to consider. The color, shape,
position on the screen, etc., are all things
that could, in principle, be used to change
the meaning of a block instruction and the
learner may wonder if the semantics of the
interpretation depend on these details or

whether they can be safely overlooked. In
general, visual programming languages do
not seem to necessarily help students learn
other programming languages (Lewis et al.
2014).

« 10 » Blocks are probably a good choice
for the very limited computational variety of
the tasks described in Goldenberg’s article,
in which a fixed sequence of instructions
does the trick. The only form of program-
ming abstraction that is introduced is the
“naming” of a value or a sequence of in-
structions.

« 11 » The metaphor of building some-
thing by putting together building blocks
that fit well together, however, can screen
off the epistemic power of language to ex-
press problems and suggest solutions, or
even make them emerge as in the case of
recursive descriptions. Moreover, if pro-
gramming is intended to be the tool able to
make explicit one’s mental discourse, a more
linguistic metaphor may help. According to
Papert,

“ in teaching the computer how to think, chil-
dren embark on an exploration about how they
themselves think. The experience can be heady:
Thinking about thinking turns every child into an
epistemologist, an experience not even shared by
most adults.” (Papert 1980: 19)

And thoughts made by words and rich
grammatical structures are closer to the way
knowledge is developed and transmitted be-
tween generations, thus something we need
to manage to improve ourselves.

« 12 » Expressing something in a way
an automatic interpreter can “understand”
(without appealing to intuition) can be
fruitful for out-of-classroom activities, too.
Juggling, for example, can be analyzed with
a procedural language: the identification of
proper sub-activities (i.e., sub-routines like
TOP-RIGHT to recognize when one jug-
gling ball is at the top of its trajectory go-
ing to the right, or TOSS-LEFT to throw the
ball with the left hand) may significantly
shorten the time for acquiring juggling
skills (from days to hours, according to Pa-
pert 1980).

« 13 » In order for this to work, however,
some sort of identification with the inter-
preter is useful. In LOGO (but also in other
more recent proposals such as the educa-

tional turtle library in Python) the interpret-
er becomes a “persona,” and computation is
then carried out through anthropomorphic
(or, better, zoomorphic, since animals are
very common) actions. In programming,
computational processes that evolve in time
are described by static texts (or blocks): the
mapping between processes and their de-
scription is not trivial and it requires a de-
tailed understanding of the interpreter, since
its automatic nature makes it inherently
different from a human equivalent. Educa-
tional programming environments often
try to make the mapping more explicit with
some visualization of the ongoing process:
the trace left by the LOGO turtle, or some
other exposition of the changing state of the
interpreter.

« 14 » This seems to contradict a famous
piece of advice coming from no less than
E. W. Dijkstra. Speaking of anthropomor-
phism in computer science, he noted:

“ The trouble with the metaphor is, firstly, that it
invites you to identify yourself with the computa-
tional processes going on in system components
and, secondly, that we see ourselves as existing
in time. Consequently the use of the metaphor
forces one to what we call ‘operational reasoning,’
that is reasoning in terms of the computational
processes that could take place. From a method-
ological point of view this is a well-identified and
well-documented mistake: it induces a combina-
torial explosion of the number of cases to consid-
er and designs thus conceived are as a result full of
bugs.” (Dijkstra 1985: 5)

« 15 » I agree with Dijkstra, the opera-
tional reasoning is an approach to overcome
to be able to deal with the intricacies of
computer science problems. The reasoning
in terms of the computational processes, how-
ever, is not only a step in growing a more
mature understanding of complex systems,
but also something we need for the “think-
ing about thinking” that opens up the episte-
mological value of programming.

Conclusion
« 16 » In his abstract, Goldenberg

claims that

“ Formal educational systems set standards and
structures to ensure some common learning and
some equity across students. For a curriculum to

http://constructivist.info
http://constructivist.info

337

Constructionist Curriculum Construction Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

tap curiosity and the drive for challenge, it needs
both the playful looseness that invites exploration
and the structure that organizes contents.”
I agree that the approach of blending puz-
zles with more structured content has great
potential, but finding puzzles apt to educa-
tional goals is hard and expensive, especially
if one wants to cover a significant part of the
school curriculum.

« 17 » I am also convinced that pro-
gramming can be a key language “in chil-
dren’s mathematical learning and creativity”
(§51), but for this we need to be careful not
to restrict unnecessarily the expressivity of
the programming tools we give to pupils.
A more general emphasis on informatics
(rather than programming) as the science
of precise descriptions for information pro-
cessing could open more powerful ideas in
the minds of students.

References

Dagienė V., Sentance S. & Stupurienė G. (2017)
Developing a two-dimensional categoriza-
tion system for educational tasks in infor-
matics. Informatica 28(1): 23–44.

Dijkstra E. W. (1985) On anthropomorphism in
science. EWD936. E. W. Dijkstra Archive,
Center for American History, University of
Texas at Austin. https://www.cs.utexas.edu/
users/EWD/ewd09xx/EWD936.PDF

Lewis C., Esper S., Bhattacharyya V., Fa-Kaji
N., Dominguez N. & Schlesinger A. (2014)
Children’s perceptions of what counts as a
programming language. Journal of Comput-
ing Sciences in Colleges 29(4): 123–133.

Lonati V., Malchiodi D., Monga M. & Morpurgo
A. (2017) Bebras as a teaching resource:
Classifying the tasks corpus using computa-
tional thinking skills. In: Proceedings of the
2017 ACM conference on innovation and

technology in computer science education.
ACM, New York: 366–366).

Papert S. (1980) Mindstorms: Children, comput-
ers, and powerful Ideas. Basic Books, New
York.

Mattia Monga is an Associate Professor at Università
degli Studi di Milano (Department of Computer

Science). His research interests are mainly in the field
of software engineering, system security, and computer

science education. Since he believes it is urgent to
change the common misconception of informatics as

the mere use of information technologies, he founded,
together with Carlo Bellettini, Violetta Lonati, Dario
Malchiodi, and Anna Morpurgo, the working group

ALaDDIn to spread informatics as a science among
the general public (https: //aladdin.unimi.it/). It

is also the National Bebras Organizer for Italy.

Received: 27 May 2019
Accepted: 12 June 2019

Author’s Response
Constructionist Curriculum
Construction, Nutritional
Supplements, and Language
E. Paul Goldenberg
Education Development Center
(EDC), USA
pgoldenberg/at/edc.org

> Abstract • Crafting constructionist
supplements to enrich curriculum is not
easy; crafting a full set of constructionist-
designed materials for day-to-day use by
students and teachers is downright hard;
both are possible. If one chooses to build
in programming, decisions about what
computer language has the “ideal” char-
acteristics may depend on the specific
subject matter or purpose to which that
language will be applied. Mathematics,
even for young children, imposes de-
mands on that programming language
– among them, the ability to create and
compose functions – that other expres-
sive purposes may not.

« 1 » I was glad to be reminded of the
quotation from Neil Postman and Charles
Weingartner with which Evgenia Sendova
and Pavel Boytchev begin their commen-
tary: the aim to keep children as question
marks perfectly captures the spirit of the
1964 Wirtz materials on which I spend over
25% of my target article and more here.
Also, I became aware that my parochial
use of the word “curriculum” is potentially
misleading. In the US, the word typically
refers to the classroom text materials that
a school adopts for use. I easily forget that
elsewhere, “curriculum” means “syllabus,”
only the guidelines for which publishers or
teachers must then create classroom ma-
terials. I apologize for any confusion my
ambiguity may have caused. To clarify, the
item I call “Wirtz curriculum” is a compre-
hensive text series for elementary school
mathematics: student books and practice
materials for grades 1–6 and teacher guides
for K-6 (see my §12). Throughout my ar-
ticle and this response, please interpret my
use of “curriculum” to mean students’ and
teachers’ classroom materials.

« 2 » While no part of my purpose in
the target article is to promote an out-of-

print 17-volume school text from 1964 that
is not even of my own creation, or to pro-
mote a particular programming language
that is also not directly influenced by me, I
devote even more time to them here in this
response, because understanding them bet-
ter may help clarify the two main purposes
of my article:
a to show that it is possible to develop a

“conventional” print school-text that is
scalable and effective (in schools, us-
able by teachers, published by a large
commercial publisher) and yet teaches
mathematics, not just arithmetic, by
teaching mathematics through arithme-
tic and by letting students do and create
mathematics;

b to show how, though programming is
not an essential component of construc-
tionist thinking, an appropriately de-
signed programming language, learned
and used thoughtfully, can provide even
young children with a valuable expres-
sive and exploratory medium for math-
ematics and can in that way support,
deepen, and enrich the learning of that
mathematics.

My focus is mathematics, not informatics.

http://constructivist.info
http://constructivist.info
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

338

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

Curriculum design requires theory,
craft, and anxiety-tolerance
« 3 » That constructionism does not

require programming is well known: In
describing the new constructionism he pre-
sented, Seymour Papert himself often used
non-programming examples, including his
boyhood interest in gears and the samba
school. Yet, understandably, Papert put
great stock in programming, as does much
discussion on constructionism. As Chronis
Kynigos and Gerald Futschek say (2015:
281), “bricolage with expressive digital me-
dia has a primary role” in constructionist
learning.

« 4 » Both commentaries – the one by
Sendova & Boytchev, and the one by Mattia
Monga – give great non-programming exam-
ples of opportunities for children to think
and create in specifically mathematical con-
texts. Kangourou is an excellent example
of stimulating mathematical problems, not
dependent on computers or projects; Be-
bras connected with computational think-
ing is also not reliant on a machine. Both
are widely known and prized. Sendova &
Boytchev (§10) value not only children in-
venting puzzles, but getting teachers, educa-
tors and designers to value it as well. Clearly,
I concur – this is my own experience and
consistent with claims I make in my article
– but that raises a long-standing anxiety: I
wish I had more trustable evidence to sup-
port my claims, and confess that I do not
see how to get it. Quoting Richard Noss and
James Clayson,

“ instructional effectiveness depends on many
variables, not least the nature of technology, a field
that is chaotic in the literal sense: tiny changes in,
for example, the user interface can make massive

changes in learning. The primary point is that in
order to ‘test’ theory, it is necessary to maintain
a gap between the pedagogical strategies at stake
and the theories that motivate them […]” (Noss
& Clayson 2015: 286)

« 5 » Even print materials have a “user
interface.” The amount, nature, and clarity
of language can make a huge difference, es-
pecially for young children. Even tiny visual
details can matter. When we were designing
Think Math (EDC 2008) inspired by Robert
Wirtz et al.’s Math Workshop from 1964, we
first used the original 1964 form – lacking
white spaces between columns – of the puzzle
shown in Figure 9 of my article. By focusing
on students’ experience, not just on overall
outcomes, we saw many students looking for
patterns along horizontal rows and, finding
none, asking for help. Though help was easy
to give, and sufficed, students’ experience, if
only briefly, was the I-do-not-get-math mes-
sage that nags at some children until they be-
lieve it. Our refinement changed nothing but
layout, adding space between the columns.
Students’ mathematical learning seemed
roughly the same both ways, but that extra
space between columns made an observable
difference in students’ independence and in
the smoothness of their learning.

« 6 » Alas, there are many such tiny
things, so many that we cannot possibly
notice them all or convey them reliably to
the next generation of designers so that the
field grows the way we imagine automo-
tive engineering to grow. Any intervention
– curriculum, teaching strategy, whatever –
is a complex object, a mélange of so many
craft elements along with the undergirding
theory that even if it “works,” it is hard to be
sure why, or know what seemingly irrelevant

tweak could have made it work better, or
worse. What element is most responsible for
success? How do the features interact? How
much of the intervention’s effect on students
is attributable to its effect on the teacher?
The impracticality of teasing out how such
intertwined variables affect the outcome
leaves us to “maintain a gap” and, at least for
the moment, tolerate our ignorance. Curric-
ulum design needs theory, art, design, and
craft, but cannot quite achieve engineering.

The role of a vision of the discipline
« 7 » In §6, Monga says, “writing sys-

tematic textbooks with a large collection of
repetitive exercises is easier than designing
engaging activities for a whole curriculum.”
That is absolutely correct and is, to me, what
made the Wirtz curriculum – a paper-and-
pencil product published over a half-century
ago – so incredibly remarkable. As I see it,
what made that possible was a particular,
and consistent, vision of mathematics (think-
ing, not just knowledge) and of curriculum.
Without computers and with limited access
to manipulatives – its teacher guide ex-
plains how (and why) to build a geoboard,
not yet commercially available – it managed
to make every student page (!) serve both
practice and intellectual growth, with some
element of curiosity-building surprise and
cause to think. It was “conventional” in the
sense of covering “standard” stuff, having a
major publisher, and being widely used, even
republished by the state of California after
Britannica, its original publisher, stopped.
Yet its structure and style were anything but
conventional or standard. For one thing, it
beautifully finessed the concept/skill battles.
Concepts are constructed by abstracting
commonality from variety; skills (whether
in arithmetic, soccer, or piano) are built
through (largely repetitive) practice. The
Wirtz curriculum cleverly combined both.
Consider just this one example of teaching
a standard algorithm for multi-digit multi-
plication. On a page of forty-four problems
(five from that page are shown in Figure 1)
the accompanying text was spare:

“ Mother liked to make puzzles out of practice
examples. Her rules were simple: Complete each
example by writing the correct digit in each empty
box. Write nothing outside the boxes.” (Wirtz et
al. 1964a: 43)

3
x

2.

8

9
x

3.

2 …

6

1 3
34.

x

1 5 …

5

42.

x

8 5
2 5

1 2

35.

x

1
2

2

Figure 1 • Learning the multiplication algorithm inside out and backwards
(from Wirtz et al. 1964a: 43).

http://constructivist.info
http://constructivist.info

339

Constructionist Curriculum Construction Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

« 8 » The first few puzzles are one-digit
by one-digit, each solvable just by knowing
a multiplication fact, but look how different
the mathematical thinking is – the mental
search for the right fact – for puzzles 2 and
3. Over the course of the page, students get
a lot of practice with low-level skills (per-
haps rehearsing many facts before finding
the ones they need) but each puzzle also en-
gages high-level thinking, touching number
theory, estimation, structure within the dis-
tributive property, and more. Students are
learning the multiplication algorithm inside
out and backwards. Literally. Like a great
composer’s études – focused practice, but
also genuine music – this focused practice
is genuine mathematics. The teacher guide
also generalizes the idea.

“ ‘Gremlins’ are allies of arithmetic teachers.
After school, they come in and erase part of the
arithmetic work done on the chalkboard during
the day. They do a most selective job of erasing.
In the morning, when curiosity over the gremlins’
work has reached a healthy pitch, the teacher asks
if the pupils can reconstruct what the gremlins
erased.” (Wirtz et al. 1964b: 43)

« 9 » It then extends the idea by showing
how much challenge and practice students
get when they invent their own such puzzles
with unique solutions – first performing a
standard multi-digit multiplication (prac-
tice!) and then mimicking the gremlins and
facing challenges like How many digits can I
erase? and Which ones?

Curriculum vs. supplement
« 10 » Why do I spend well over 25% of

the target article (and even more space here)
on a paper-and-pencil school curriculum,
when constructionism is so closely associ-
ated with Papert, computers, independent
projects, and informal or out-of-school
learning?

« 11 » To me, the crux is that while ma-
terials like Kangourou, the many clever tools
that Sendova & Boytchev describe, and the
EDC microworlds that my colleagues and I
are designing (§§57–77) can be powerful re-
sources to support a high-quality curriculum,
they are not, themselves, curriculum materi-
als. Scalability requires more. What the Wirtz
texts show is that it is possible to build a for-
mal school text – not supplementary activi-

ties or after-school classes or maker spaces,
all unquestionably valuable but optional
– that is both mathematically deep and still
usable (“scalable”) in schools. For construc-
tionism to effect change broadly in education,
we must somehow be able to use its design
ideas – ones that build students’ agency and
let them explore and create while learning a
heritage of ideas and knowledge – to accom-
modate a scalable/usable process.

« 12 » Framework-specification of cur-
ricula makes it even harder to create mate-
rials that let children be intellectually cre-
ative, even with computers and especially
with only paper as a medium. As Monga says
(§5), that is hard to achieve even for a group
that has the time to collaborate, think, re-
flect, test, and revise – luxuries not available
to classroom teachers. It may be the am-
biguity in my use of “curriculum” that led
Monga then to state “I doubt a single teacher
[…] could sustain the necessary creativity
[…]” Of course! No teacher should have to
figure out how to find that time and sustain
that creativity. That is the very purpose of
curriculum materials (and supplements).
It is unreasonable to imagine that teachers
would also be able to invent a sensible set
of materials from scratch (required cover-
age, content accuracy, coherent order, clear
focus, effective activity, sufficient practice,
appealing craft, clear writing and graph-
ics), given a list of objectives, for even one
subject, let alone for all of their subjects.
(Astonishingly, at least in the United States,
many districts are now expecting teachers
to do exactly that!)

« 13 » The Wirtz curriculum illustrates
something else. Monga (§6) writes “we all
‘learned’ some things by a rote or strictly
algorithmic approach […].” I assume that is
connected with my statement (§11), “Solv-
ing a puzzle is different from working an
exercise: the process is not rote or algorith-
mic […].” Monga is correct and could make
an even stronger claim: Some things, like
people’s names, are learned only by memo-
ry; they cannot be reasoned out, discovered,
or learned “creatively.” But if his §6 is a re-
sponse specific to my §11 – as if to say we all
learned some of our mathematics that way –
that raises two concerns for me: the “all” and
the “mathematics.” “We all” are the people
who did thrive adequately in class. Others
did not. To me, Monga’s statement reflects

the perspective of the already “arrived” uni-
versity computer science professor and not
the view of the path to arrival, seeing learn-
ing and teaching mathematics to young chil-
dren from the perspective of classrooms and
teachers and psychologists (and even many
mathematicians).

« 14 » Being a mathematician – or, for
that matter, a good detective, a good diag-
nostician of the ailments of a car or person,
or a good historian or paleontologist – re-
quires being able to figure out things that
one has not already learned, by rote or in
any other way, being able to select and apply
heuristics, not just algorithms, and invent
new heuristics and algorithms. If we do not
devote some part of any curriculum to that
kind of figuring out, we are leaving that im-
portant skill (yes, a skill) to chance, training
children only on the rote and hoping some
will figure out the rest on their own. We all
did learn “some things by a rote or strictly
algorithmic approach,” but that adequately
served only some of us, not all. If the cur-
riculum designer’s vision foregrounds math-
ematical thinking (see, e.g., Cuoco, Golden-
berg & Mark 1996) as does Wirtz, we could
all plausibly learn more. My intent in §11
was not to reject a method (rote), but to add
one. Puzzles are puzzling precisely because
they can not be solved just by routine; they
can incorporate needed practice (the “rote”
part) but are not only practice. That combi-
nation is what made the Wirtz curriculum
so brilliant.

Optimizing a programming
language for children doing
mathematics
« 15 » I was initially surprised by the no-

tion (Sendova & Boytchev’s abstract) of pro-
gramming being “‘repurposed’ to wrap the
math in an attractive, yet educationally effec-
tive way.” As I read on, I understood better.
Though, in §54, I attached the idea of using
programming as a language for learning and
expressing mathematics to Sendova, I never
mentioned that “my” thinking about pro-
gramming that way derived directly from
what I saw when I visited her and the Bul-
garian Academy of Sciences in 1989 to see
her work. (This view of programming was,
as I coded it in my head, their idea, which we
did say in our proposal to the NSF.) At first,
the notion of “wrapping the math” clashed

http://constructivist.info
http://constructivist.info

ED
UC

AT
IO

NA
L

RE
SE

AR
CH

 C
ON

CE
PT

S
IN

 C
ON

ST
RU

CT
IO

NI
SM

340

 CONSTRUCTIVIST FOUNDATIONs vol. 14, N°3

in my head with the notion of “expressing
mathematics.”

« 16 » But when I understood Boytchev’s
metaphor, it all became clearer. The many-
thousand-years-old evolution of mathemat-
ical thinking involved abstracting structure
and pattern from observations and experi-
ments and later using the abstractions them-
selves as data for new knowledge and think-
ing. Classroom learning cannot start from
scratch and rebuild the entire structure so,
whatever else we do, we also depend heav-
ily on knowledge captured in words and
symbols, “the way knowledge is developed
and transmitted between generations,” as
Monga put it (§11). The kernel of mathemat-
ics is wrapped in various languages – always
one’s natural language and mathematical
notation (my §53), and other abstractions
(e.g., graphs, geometric diagrams), all with
subtleties that clarify some meanings but
obscure others. To get to the mathematics
through programming necessarily involves
unwrapping it, like making the program-
ming somehow transparent. My (§56) “ex-
pressiveness of a ‘live’ language,” meant no-
tation on a computer (in, say, Snap!) which
can be run, giving us feedback on what it
says. This is like how natural language is
learned and how learning occurs through
using natural language: we dialogue; we say
something, and someone reacts, so we get to
see what effect we have created. By contrast,
notation on paper in conventional algebraic
form just sits there, correct or incorrect, and
gives no feedback. Without “rerunning” the
code mentally, we may not find out what
those symbols said.

« 17 » The computer language one
chooses can certainly matter. In our pro-
posal to the NSF to treat programming as
a language for young children to express
and explore their growing mathematical
ideas, we proposed to use Scratch, familiar
in increasingly many elementary schools
and massively successful in attracting chil-
dren to programming. As we worked, it ap-
peared that Scratch would not adequately
serve our purposes – children’s mathematics,
not introduction to coding – which is why
we switched to Snap!. The two languages
look very much the same, so teachers (and
children) with prior experience in Scratch
would have no trouble switching over, but
Snap! lets students build their own mathe-

matical functions – code that takes an input
and returns an output – and compose those
to build yet others, not currently possible in
Scratch. In Snap!, functions are first-class
objects, so children can map a function
they create over a list. Some of what we are
already doing with second-graders (e.g.,
providing the combine steps block shown in
Figure 22 of my article, or enabling them to
create blocks like the pink +2 block shown
in §70) are not possible in Scratch.

« 18 » This is neither promotion of Snap!
nor criticism of Scratch – they are optimized
for different purposes, which is one reason
why there are different computer languages.
The C and Lisp families are optimized for
different purposes; both remain essential.
Nor is this a treatise on comparative com-
puter languages expounding on Snap!’s fea-
tures. However, knowing what a language
is matters when evaluating how it is used.
I agree with Monga that “If programming is
supposed to be a key mental tool to express
mathematical ideas […],” then “a program-
ming tool with a limited potential of ex-
pression, based only on simple sequences
of predefined steps [is] too limited even at
[second grade]” (Restructured from §7). Yet
expressiveness and form are not the same:
the misperception that blocks-based means
unsophisticated is so widespread that I feel
compelled to address it.

« 19 » Differences in computer languag-
es almost certainly do affect the metaphors
and models that students build in their
heads – instrumental genesis – and it might
well be that first languages have a particular-
ly strong influence. Therefore, as Monga says
in §17, we should “be careful not to restrict
unnecessarily the expressivity of the pro-
gramming tools we give to pupils.” Working
in a low-level language, one that is closer to
the hardware and operating system architec-
ture (e.g., C++), draws attention to different
things than does working in a high-level
language (e.g., Logo). They satisfy different
needs and each is optimized for its purpose.
Both are text. This issue is not about blocks
vs. text; form is not function.

« 20 » I may be misunderstanding
Monga’s intent in §§10f, but he seems to
say that the metaphor of building blocks is
somehow less linguistic, “screen[ing] off the
epistemic power of language.” I see it differ-
ently. The atoms of a language are, more or

less (depending somewhat on the language),
its words. The atoms of a writing system may
be words, too – logograms as in Han Chi-
nese characters or a block-based language
– or may be tinier elements, syllabic or al-
phabetic, from which the written words are
constructed as molecules. None of these
variations bear on sophistication. When
university students take computer science,
they will need to know that computer lan-
guages, like natural languages, can differ not
just in abstraction level and in vocabulary
and local syntactic details, but in structure
and metaphor (think imperative vs. func-
tional or compare Scheme and Prolog);
graduate students in linguistics similarly
learn that natural languages differ not just in
low-level detail but in surprisingly different
syntactical constructs and semantic spaces.

« 21 » A block language, like a special-
purpose text-based language, can be very
limited, but it does not have to be. Vocabu-
lary size and vocabulary power are indepen-
dent attributes, and independent from the
form in which the vocabulary is presented.
Monga is right (§11) that “thoughts made by
words and rich grammatical structures are
closer to the way knowledge is developed
and transmitted between generations.” But
words do not imply alphabet: think Han
characters or a sign language or, for that mat-
ter, speech. Children need words and rich
structures that admit to extensibility and
offer powerful metaphors. And, as children
develop more complex ideas to express, they
need more vocabulary and richer structure.
Just as learning one’s native language begins
simply, a mathematically expressive lan-
guage for children can begin simply, as long
as it has both fidelity to mathematics and the
extensibility to serve well as the child’s ideas
grow. Nobody should be distracted by semi-
colons in writing English or computer code
until (if ever) they are needed. And educa-
tors should not be distracted by whether the
tokens of the language – the words that con-
vey meaning – are typed or dragged.

« 22 » Giving children limited tools will
restrict what they can express and, potential-
ly, narrow how they learn to think. Giving
them distracting or cumbersome tools is also
restrictive. The optimal solution would seem
to be some flavor of high-level language with
a robust starting vocabulary, flexible (and
extensible) data structures, functional pro-

http://constructivist.info
http://constructivist.info

341

Constructionist Curriculum Construction Paul Goldenberg

Constructionism

 http://constructivist.info/14/3/319.goldenberg

gramming capability, recursion, higher-or-
der functions, low syntactic distraction, and
a way to tailor the environment so students
encounter new power only as they need and
can use it, without having to sift past it or
learn everything before they start. That could
certainly be a text-based language like Logo,
but typing is hard work and prone to error.
Why not provide the same extensibility as
Logo (or Python or JavaScript or any good
text-based language) but present the primi-
tive vocabulary of that language in draggable
blocks that can flexibly create the full range
of new vocabulary and structure?

References

Cuoco A., Goldenberg E. P. & Mark J. (1996)
Habits of mind: An organizing principle for
mathematics curriculum. Journal of Math-
ematical Behavior 15(4): 375–402.

EDC: Education Development Center (2008)
Think math! Harcourt, Orlando FL.

Kynigos C. & Futschek G. (2015) Re-
situating constructionism. Construc-
tivist Foundations 10(3): 281–284.
▶︎ https://constructivist.info/10/3/281

Noss R. & Clayson J. (2015) Reconstruct-
ing constructionism. Constructiv-

ist Foundations 10(3): 285–288.
▶︎ https://constructivist.info/10/3/285

Wirtz R., Botel M., Beberman M. & Sawyer W.
W. (1964a) Math workshop: Level D student
book. Encyclopaedia Britannica Press,
Chicago IL.

Wirtz R., Botel M., Beberman M. & Sawyer W.
W. (1964b) Math workshop: Teacher guide,
level D. Encyclopaedia Britannica Press,
Chicago IL.

Received: 29 June 2019
Accepted: 4 July 2019

http://constructivist.info
http://constructivist.info
https://constructivist.info/10/3/281
https://constructivist.info/10/3/285

	Problem Posing and Creativity in Elementary-School Mathematics
	Children choose challenge
	Why puzzles?
	Puzzles and surprise in mathematics learning
	Why have students invent puzzles?
	Programming as a language for learning mathematics
	Programming in general
	Playgrounds
	Conclusion
	Acknowledgements
	Open Peer Commentaries
	References
	Keeping the Children as Question Marks: Educational Attempts to Tap Curiosity and the Drive for Challenge
	Problem Posing and Programming as a General Approach to Foster the Learning of Mathematics
	Author’s Response
Constructionist Curriculum Construction, Nutritional Supplements, and Language

